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combined modelling for iron ore demand forecasting 
with intelligent optimization algorithms

introduction

As one of the basic raw materials used for national economic development, a safe and 
stable iron ore supply can essentially guarantee sustainable development. The National Plan 
for Mineral Resources (2016–2020) issued by the Ministry of Land and Resources notes that 
China is currently in the middle stage of industrialization and that energy demand growth 
will slow, but the total energy demand will remain at a high level. However, the reserve-pro-
duction ratios of most mineral products are still low in China. Resource security issues are 
becoming increasingly prevalent. Therefore, it is important to effectively forecast the iron 
ore demand, and accurate forecasts could aid future development strategies. 

Many types of energy demand forecasting models exist in the literature. The models that 
have been applied mainly include the traditional statistical and econometric techniques of 
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exponential smoothing (Mi et al. 2018), linear regression (D’Amico et al. 2020), autoregres-
sive integrated moving average (Wang et al. 2020), and generalized autoregressive condi-
tional heteroscedasticity (Bikcora et al. 2018) models. If these models are used separately for 
forecasting, their neglect of the nonlinear characteristics of the energy demand will result 
in large errors. To solve this problem, machine learning methods have been produced, such 
as the artificial neural network (Al-Fattah 2020) and support vector machine (Kazemzadeh 
et al. 2020). The extensive use of these machine learning methods has contributed to im-
provements in forecasting performance. However, such improvements do not suggest that 
nonlinear models can completely replace linear models in forecasting the energy demand. 
Davies and Petruccelli concluded that the conditional mean and conditional median fore-
casts of nonlinear time series models exhibit poor forecasting performance compared to 
those of linear models (Davies and Petruccelli 1988). In other words, one forecasting mo-
del cannot accurately encompass all the information in a time series, but different types of 
models can play complementary roles to improve the forecasting accuracy. Thus, combined 
forecasting models have been developed.

The concept of combining forecasts was first proposed by Bates and Granger (Bates and 
granger 1969). They found that a combined forecasting model displayed better forecast-
ing performance than individual models. Combined forecasting models have been applied 
in various fields, such as energy demand forecasting, tourism demand forecasting, price 
prediction, electricity consumption forecasting and wind speed forecasting. For example, 
Liu et al. proposed a combined forecasting model based on the grey forecasting method 
and a back-propagating neural network to predict energy consumption (Liu et al. 2016). 
Wang et al. established a combined forecasting model of the tourism demand using an arti-
ficial neural network and a clustering algorithm (Wang et al. 2018). Zhang et al. presented 
a hybrid model based on the autoregressive moving average, a kernel-based extreme learn-
ing machine and wavelet transform to forecast electricity prices (Zhang et al. 2017). Zhou 
et al. proposed a cloud model based hybrid method for combining forecast (Zhou et al. 2019). 
Song et al. constructed a combined wind speed forecasting model that effectively improved 
the forecasting accuracy (Song et al. 2018). The applications of combined models have yiel-
ded a common result: combined forecasting models generally outperform individual model. 
Notably, it is not widely used in iron ore demand forecasting.

In this study, the Holt-Winters (HW) non-seasonal exponential smoothing, autoregres-
sive integrated moving average (ARIMA), support vector machine (SVM) and extreme 
learning machine (ELM) models are combined to capture various relationships and cha- 
racteristics from time series data to accurately forecast the iron ore demand. As a classical 
statistical prediction tool, the ARIMA model has been one of the most popular models for 
time series prediction. Moreover, the exponential smoothing (Holt-Winters) model has the 
advantages of a low computational demand and easy operation. However, the two methods 
can only assess linear features of time series data. To overcome this shortcoming, the SVM 
and ELM algorithms are incorporated into the combined model. The SVM is a neural net-
work algorithm by which the nonlinear features of the iron ore demand can be obtained.  
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The method adopts the policy of structural risk minimization and is especially suitable for 
solving problems based on a small sample size. ELM is a single hidden layer feed-forward 
neural network, which can obtain the unique optimal solution by setting the number of hid-
den layer neurons. And it has the characteristics of fast learning rate and good generalization 
performance. The advantages and disadvantages of the four individual models are comple-
mentary, which may lead to high prediction accuracy.

In a combined forecasting model, the weighted coefficients of the individual models have 
a considerable impact on the resulting prediction. Therefore, the theoretical method used to 
determine the weighted coefficients is particularly important in combined forecasting. Since 
the 1970s, a series of new intelligent optimization algorithms have been proposed. The op-
timal solution can be obtained by simple information dissemination and evolution methods. 
The advantages of intelligent optimization algorithms lie in high parallelism, self-organiza-
tion, self-learning and self-adaptation and providing a new way to solve complex problems.  
The related researches on applying the intelligent optimization algorithm to construct com-
bined forecasting models are shown in Table 1. genetic algorithm (gA), particle swarm  
optimization algorithm (PSO) and simulated annealing (SA) algorithm are the most com-
monly used intelligent optimization algorithms in industrial and scientific research fields. 
Therefore, this paper uses the GA, PSO and SA algorithms to determine the weighted coeffi-
cients of the HW, ARIMA, SVM and ELM models and obtain the best combined prediction 
model of the iron ore demand.

Table 1. Applications of intelligent optimization algorithms in combined forecasting

Tabela 1. Zastosowania inteligentnych algorytmów optymalizacyjnych w połączonym prognozowaniu 

Authors Combined forecasting models Main results

Zhang  
et al. 

(2019)

The non-dominated sorting genetic algorithm 
III combined system with three objective 
functions, was proposed and successfully 
employed to solve the predicament of 
electricity load forecasting.

Both the stability and the accuracy of the 
proposed combined system are superior to 
the compared model which was shown in the 
experiment results.

Al-Hnaity 
and 

Abbod 
(2016)

A hybrid model combining BPNN, SVM and 
SVR is presented. The weight of the proposed 
model is determined by gA.

The numerical results of this model are better 
than those of all single models, traditional 
simple average combination models and 
traditional time series model.

Wang 
et al. 

(2010)

This paper presented a new combined model 
for electric load forecasting, and the adaptive 
particle swarm optimization was employed 
to optimize the weight coefficients in the 
combined forecasting model.

The proposed combined model has been 
compared with the individual models and 
the other combined model reported in the 
literature and its results are promising.

Wang 
et al. 

(2012)

The combination of ESM, ARIMA and BPNN 
includes the advantages of all three models. 
gA determines the weight of the proposed 
hybrid model.

Numerical results show that the model 
outperformed all traditional models, including 
ESM, ARIMA, BPNN, the equal weight 
hybrid model and the random walk model.
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The structure of this paper is as follows. The first section describes the individual  
forecasting models, including the HW, ARIMA, SVM and ELM models. The intelligent 
optimization algorithms of determining the weight are introduced in the second section. In 
the third section, the experimental results of individual models and combined forecasting 
models are analyzed, and a comparative study is conducted. Finally, the conclusions are 
presented. 

1. individual forecasting models used in the combined model

1.1. Holt-winters (Hw) non-seasonal exponential smoothing model

The HW method was proposed by Winters in 1960 (Winters 1960). The Holt-Winters 
(HW) non-seasonal exponential smoothing model is suitable for time series with linear 
trends and no seasonal variations. Therefore, this paper applies the Holt-Winters (HW) 
non-seasonal exponential smoothing model to forecast the iron ore demand. The calculation 
formula of smooth sequence ŷt of time series yt is as follows:

 ŷt+k = at + btk (1)

where at and bt represent the intercept and slope respectively. These two parameters are 
defined by the following two recursive formulas:

 at = αyt + (1 – α) (at–1 + bt–1) (2)

 bt = β(at – at–1) + (1 – β) bt–1 (3)

where α and β are the damping factors, they are between 0 and 1, k > 0. The forecast formula 
is as follows:

 ŷT+k = aT + bTk (4)

The HW model can effectively predict future trends based on historical data, and it meets 
the requirements of iron ore demand prediction with linear trends. Therefore, this approach 
can be reliably used to establish a combined model. 

1.2. autoregressive integrated moving average model (arima)

The ARIMA model is a well-known time series forecasting method. It was proposed 
by Box and Jenkins in the early 1970s (Box and Jenkins 1976). The ARIMA model is an 
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extension of the ARMA model, which includes an autoregressive model (AR) and a moving 
average model (MA). The ARIMA model can be expressed as ARIMA(p, d, q), where p and 
q are the orders of the AR and MA models, respectively, and d is the number of differences. 
The basic concept of this approach is to approximately describe a random sequence with 
a mathematical model. The random sequence is a data sequence of a predicted object. After 
the model is identified, it can be used to forecast the trend values at future times based on the 
past and current values of a time series. This can be written as:

 ϕ(B) d xt = θ(B) et (5)

 d = (1 – B)d (6)

 ϕ(B) = 1 – ϕ1B – ϕ2B2 – ... – ϕpBp (7)

 θ(B) = 1 – θ1B – θ2B2 – ... – θqBq (8)

where xt is the historical value at the period t, et is the estimated residuals. B is a backward 
shift operator defined by Bxt = xt–1. ϕ1, ϕ2, ..., ϕq are the autoregressive coefficients. θ1, θ2, ..., 
θq are the moving average coefficients.

The ARIMA model is simple and easy to understand. It only requires endogenous va- 
riables to identify the linear characteristics of stationary time series. Moreover, the model 
has been successfully applied to univariate time series. 

1.3. support vector machine (sVm)

Support vector machine is a neural network classification technique based on statistic 
learning theory and the structural risk minimization principle (Vapnik 1995). In the support 
vector regression model, sample data is divided into a training sample and a test sample. Its 
fundamental idea is to map training data from input space into high-dimensional feature 
space. The best fitting effect is obtained in the space of the optimal decision function model, 
and the test sample is used to validate the analytical model results. given a training data set 
of T{(x1, y1), ..., (xi, yi)} in which xi ∈ Rn (i = 1, ..., l) is the input vector, yi ∈ R (i = 1, ..., l)  
is the output value and l is the total number of sample data. The key idea of the model is 
to map the input space into a higher dimensional and possibly infinite-dimensional feature 
space via nonlinearly mapping ϕ(x). The aim is to determine f(x) based on the train data set 
to approximate the unknown function g(x). The form of the approximation function f(x) has 
the following format:

 f(x) = ωTϕ(x) + b (9)
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where ϕ(x) is the high dimensional feature space, it is nonlinearly mapped from the input 
space. The coefficients ω and b are estimated by solving the dual problem.

The method has notable advantages in dealing with small sample sizes, nonlinearity and 
high-dimensional problems. As an effective method, it can be used to effectively forecast the 
iron ore demand.

1.4. extreme learning machine (elm)

Extreme Learning Machine (ELM) is a learning algorithm (Huang et al. 2006), which 
is suitable for single hidden layer feed-forward neural network. The main characteristic is 
that only the hidden layer nodes are required before network training. And the weights of the 
input node and hidden layer node and hidden node threshold can be assigned randomly. Then 
the output weight of the hidden layer can be obtained by an analytic operation. Its network 
training process is completed at a time without complicated iterative operation. given input 
samples, the output of ELM having L hidden nodes is modelled by:

 1
( ) , 1, 2, ...,

i

i i j i j s
L

f x b y j N
=
β ω + = =∑

 (10)

where {xj, yj} represents the training samples, Ns is the number of samples, ωi = [ωi1, ωi2, ..., 
ωin]T is the weight vector connecting the i-th hidden node and the input nodes, βi = [βi1, βi2, 
..., βim]T is the weight vector connecting the i-th hidden node and the output nodes, and bi is 
the threshold of the i-th hidden node.

The ELM algorithm has fast learning speed and generalization performance, which can 
be applied to the prediction of iron ore demand and play an active role in combined fore-
casting. 

2. combined forecasting model

2.1. theory of combined forecasting

The basic theory of combined forecasting involves the linear combination of individual 
models. To obtain the linear and nonlinear features of time series data, the HW, ARIMA, 
SVM and ELM models are chosen as the individual forecasting models. Then, the weighted 
coefficients of the individual forecasting models are determined by three intelligent optimi-
zation algorithms.

In this approach, i (i = 1, 2, ..., m; m = 4) represents the number of individual models; 
t(t = 1, 2, ..., n) is the sample interval; fit is the forecasted value of an individual model; yt is 
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the actual value; and the weighted coefficients of individual models are wi, 
1

1
m

i
i

w
=

=∑ . Thus, 

the forecasted value using the combined model is as follows. 
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Additionally, the prediction error of the combined model can be calculated as follows.
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Therefore, the forecasted value of the combined model of the iron ore demand can be 
expressed as follows:

 ŷcombined(t) = w1 ŶHW(t) + w2 ŶARIMA(t) + w3 ŶSVM(t) + w4ŶELM(t) (13)

where ŶHW(t), ŶARIMA(t), ŶSVM(t) and ŶELM(t) are the forecasted values of the HW, ARIMA, 
SVM and ELM models, respectively, in period t. Additionally, w1, w2, w3 and w4 are the 
weighted coefficients of the HW, ARIMA, SVM and ELM models, respectively.

2.2. the combined methodology

The weight coefficient plays an important role in the establishment of the combined 
model. Different theoretical methods will exhibit different forecasting accuracies. To obtain 
a relatively optimal combined forecasting model, this paper selects the particle swarm opti- 
mization algorithm, simulated annealing algorithm and genetic algorithms to allocate the 
weights. The optimal prediction model of the iron ore demand is identified by comparison 
and analysis.

2.2.1. Use of the intelligent optimization algorithm

Intelligent optimization algorithms have global optimization performance and versatili-
ty, and they are suitable for parallel processing. In general, these algorithms have a rigorous 
theoretical basis rather than rely on expert experience. They can minimize the sum of ab-
solute errors to get the optimum weights of combination forecasting. Therefore, it is a wise 
decision to use them in combined forecasting of iron ore demand.

The genetic algorithm (gA) is a randomized search method that evolves from the evolu-
tion rule of biological world (Holland 1975). It is characterized by the direct manipulation of 
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structural objects without restrictions on derivative and function continuity. gA has implicit 
parallelism and global optimization performance. Adopting the probability method, it can 
get and guide the search space of optimization voluntarily, adjust search direction by adapta- 
tion to itself, and has no definite regular. GA is one of the key technologies of intelligent 
computing.

The simulated annealing (SA) algorithm is a kind of stochastic optimization algorithm 
based on the Monte Carlo iterative solution method. Its starting point is based on the simi- 
larity between the annealing process of solid matter in physics and general combinatorial 
optimization problems. With probabilistic jumping property, the SA algorithm randomly 
searches for the global optimal solution of the objective function in the solution space. The 
SA algorithm is a general optimization algorithm, which has probabilistic global optimiza-
tion performance. 

The particle swarm optimization (PSO) algorithm is a kind of intelligent searching opti-
mization algorithm, originating from bird’s searching for food, in which some particles were 
initiated, and then iterated in them until an optimization solution was obtained (Eberhart 
and Kennedy 1995). The advantages of the PSO algorithm are simple, efficient and easy to 
implement. Therefore, it is an effective tool for optimizing the weights of combined fore-
casting.

2.2.2. Evaluation criteria

In this paper, the root mean square error (RMSE), mean absolute error (MAE) and ave-
rage relative percentage error (MAPE) are selected as the evaluation index system for the 
forecasting models of the iron ore demand.
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where yt is the actual value of iron ore demand; ŷt is the forecasted value; and t is the number 
of samples.

The MAE, RMSE and MAPE are metrics used to evaluate the predictive effect, and low 
values of MAE, RMSE and MAPE indicate high forecasting accuracies.

An accuracy improvement (AI) criterion is used to compare the combined models and 
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other models. The AI criterion is designed to compare the two predictive models and is de-
fined as follows:

 
100%combinedS S

AI
S

−
= ⋅

 (17)

where S is the sum of the absolute errors of a specified model and Scombined is the sum of the 
absolute errors of combined model.

The predictive effect is assessed based on an AI value greater than or less than zero.  
If AI > 0, the combined model is considered the most effective model; if AI < 0, the combined 
model will not be able to overcome the drawbacks of the specific model.

3. experimental examples and results

3.1. data description

There are 40 observations about China’s iron ore demand between 1980 and 2019 in 
Figure 1. As Figure 1 shows, China’s iron ore demand showed a growth trend from 1980 
to 2014, the total demand decreased from 2015 to 2019. A turn occurred in 2001. The iron 
ore demand grew at a snail’s pace in the first twenty years. Then China’s iron ore demand 
stepped into the golden age of booming from 2002. This data was not directly obtained. 
Some of the data is from the National Bureau of Statistics, and the remainder is from the 
Chinese Mining yearbook.

The iron ore demand showed a slow growth trend from 1980 to 1990; the reason was that 
China was in the early stage of reform and opening up. At that time, the main consumption 

Fig. 1. Chinese annual iron ore demand

Rys. 1. Roczne zapotrzebowanie Chin na rudę żelaza
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fields of iron ore, including industry and construction, were in their infancy stage. However, 
the growth of iron ore demand accelerated significantly since 1991. Although the demand 
for iron ore only reached 0.4016 billion tons by the end of 2001, it has tripled compared with 
1980, the average annual rate of increase was up to 5.6%. At this point, the industry and 
construction are under development, the political strategy of reform and opening up has 
achieved remarkable results.

From 2002 to 2014, the average annual rate of increase of iron ore demand had reached 
18.20%. This is the result of the promotion of national economic strength and the accelerated  
development of industry and construction. This reduction trend occurred in 2015, and the 
demand for iron ore decreased by 92.1898 million tons compared with 2014. Although the 
iron ore demand from 2015 to 2017 showed a very slow growth trend, the reduction of total 
demand occurred again in 2018, 0.4872 billion tons less than 2017. Then the iron ore demand 
again started to slowly increase, iron ore demand grew to 2.9817 billion tons from 2018 to 
2019 at a rate similar to that of 2002–2003. The occurrence of the reduction trend is related 
to the adjustment of the industrial structure. At present, China’s tertiary industries have 
surpassed its secondary industries, and the proportion of the mining industry centered on 
raw materials decreases.

The proper selection of the training set and testing set is an important forecasting con-
sideration. If the training set contains a vast majority of samples and the test set is relatively 
small, the evaluation results of each model may not be stable and accurate; if the test set 
contains more samples, the difference between the training set and the data set will be large, 
and the fidelity of the evaluation results will be reduced. There is no perfect solution to this 
problem. The common practice is to use about 2/3-4/5 samples for training and the remain-
ing samples for testing (Zhou 2016). In this paper, 3/4 of the data is used to train models, and 
the remaining 1/4 of the data is used as test sets to determine the model performance. Based 
on these considerations, the period from 1980 to 2009 is selected as the training period, and 
2010 to 2019 as the testing period.

3.2. models construction

To obtain the optimal iron ore demand prediction model, those individual and combined 
models, including the HW, ARIMA, SVM, ELM models and PSO, gA and SA combi- 
ned models are adopted for comparison.

The HW and ARIMA belong to linear models. They only require endogenous variables 
to identify the linear characteristics of time series. The HW model is used to forecast the 
iron ore demand, its smoothing coefficient is in the range of 0.01–0.3 according to the prin-
ciple of minimum sum of squares of the prediction error. The natural logarithm of the iron 
ore demand data is stationary after one order difference. The logarithm operation does not 
change the nature and correlation of data, but it compresses the scale of variables, makes the 
data more stable, and weakens the collinearity and heteroscedasticity of the ARIMA model. 
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Under the assumption of stationary data, ARIMA (1, 1, 1) is identified based on the com-
prehensive assessment of the t test and the information criteria. After the residual sequence 
correlation test and a heteroscedasticity test, the prediction results of ARIMA (1, 1, 1) can 
be obtained.

ELM and SVM are designed to pick up nonlinear patterns from the iron ore demand time 
series. Experiments and error analysis show that ELM performs better when four neurons 
are used as the hidden layer and sigmoid activation function is chosen. The radial basis 
function (RBF) is used as the kernel function of SVM. Through a series of experiments to 
establish SVM, the best fitting parameters are obtained as c = 800 and g = 0.05.

SA, PSO and gA algorithms are popular intelligent optimization algorithms for as-
signing optimal weights to combinatorial models. For gA, its population size is set as 100, 
and the number of generations and stall generations are 200. The max iterations of SA are 
specified as 200. The PSO algorithm performs better when the parameters of c1 and c2  
are 1.49445, the number of maximum iteration is 200, the number of particles is 100, and ω 
varies at different data points from 0.4 to 0.9.

3.3. results analysis

3.3.1. Forecasting results

Figure 2 shows the comparison between each of the model for forecasting the 10 final 
values from 2010 to 2019. It shows that the HW, ARIMA, SVM and ELM models describe 
the characteristics of the iron ore demand time series in an approximate manner. As the 
Figure 2 shows, HW and ARIMA models had a good forecast effect on the iron ore demand 
from 2010 to 2014, but a relatively poor forecast effect for 2015–2019. The reason may be 
that the data from 2010 to 2014 tends to be straight lines, while the fluctuation of data from 
2015 to 2019 is more obvious. SVM and ELM models have more advantages in the forecast-
ing of iron ore demand from 2015 to 2019 than HW and ARIMA models, which reflect the  
fluctuation of real data in an approximate manner. This is bound to be inseparable from  
the fact that HW and ARIMA models belong to linear models, the SVM and ELM are defined 
as nonlinear models. Usually, linear and nonlinear factors should be considered simulta- 
neously. Only in this way can the prediction results be closer to the true values. It can be 
observed that when gA, PSO and SA are used to construct the combined forecast models, 
the forecasts obviously improve. Not only the forecast results of 2010–2014 are pretty close 
to the true values, but the forecast results from 2015 to 2019 are also satisfactory.

3.3.2. Error analysis 

Overall, the individual forecasting models and combined forecasting models all exhibit 
greater errors from 2015 to 2019 than those in other periods in Figure 2. The most likely 
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Fig. 2. The actual values and the forecast values by individual models and combined models

Rys. 2. Wartości rzeczywiste i prognozowane według modeli indywidualnych i modeli połączonych
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reason for this result is the change of the development trend. The iron ore demand showed 
a growth trend from 1980 to 2014, but it decreased from 2015 to 2019. However, forecasting 
models must further study the long-term statistical regular and useful information of the 
iron ore demand from time series data. It is easy to ignore these values with large deviations 
from the general trend. Under that condition, the HW, ARIMA, ELM and SVM models 
are combined using weights between 0 and 1. Obviously, the average of forecasting error 
of combined model from 2015 to 2019 is reduced relative to that of the individual models. 
This finding suggests that these combined forecasting models encompass the advantages of 
low error model. The combined model, to a certain extent, improves the predictive effect for 
abnormal data. Thus, the rationale for applying four individual forecasting models is demon-
strated, and the superiority of the combined forecasting model is shown.

By observing the actual and forecasted value of iron ore demand in Figure 2, we find 
that the forecasted value of the four individual models are less likely to all be simultaneously 
larger or smaller than the actual value. That is, within the same sample, the signs of the er-
rors are usually inconsistent. For the forecast results of iron ore demand from 2010 to 2015, 
the forecasted value of the HW and ELM models are close to the actual value. Although the 
forecast results of the ARIMA and SVM models are not satisfactory, the forecasted value of 
the ARIMA model in this period are greater than the actual value, while the forecasted value  
of the SVM model are lower than the actual value. For the forecast results of 2016–2019, al-
though the forecasted value of the ARIMA and SVM models are greater than the actual va- 
lue, the forecasted value of the HW and ELM models are generally less than the actual 
value. Therefore, combined forecasting with the four complementary individual models can 
achieve the best predictions.

3.3.3. Evaluation results

Table 2 shows the evaluation results of the generalization performance of the HW, ARIMA,  
SVM, ELM forecasting models and gA, PSO, SA combined models for iron ore demand, 
including MAE, RMSE, MAPE and AI evaluation criteria. From the experimental results 
given in Table 2, we can find the effectiveness of the combination models. The combination 
models present the lower error value for the MAE, RMSE, and MAPE criteria than the 
individual methods. The performance of the individual methods (HW, ARIMA, SVM, and 
ELM) is inferior to those of the combination models. This is due to the fact that the combi-
nation models integrate the linear and nonlinear information to forecast, while the individual 
model only utilizes the linear or nonlinear information of the time series.

As can be seen from the evaluation results in Table 2, the robustness and generalization 
of the PSO combined model are better than other models. The results of MAE, RMSE and 
MAPE support the view that the PSO combined model has the best prediction effect in 
forecasting iron ore demand. Observing the results of AI criterion, the accuracy of PSO 
combined model compared to the HW, ARIMA, SVM, ELM, gA and SA combined models 
improved 55.44%, 83.81%, 56.05%, 44.35%, 5.48% and 4.03%, respectively.
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Table 2. The evaluation results for the forecasting models

Tabela 2. Współczynniki korelacji zapotrzebowania na rudę żelaza oraz czynniki wpływające

Evaluation 
index

Individual forecasting models Combined forecasting models

HW ARIMA SVM ELM gA PSO SA

MAE 0.1122 0.3089 0.1138 0.0898 0.0529 0.0500 0.0521

RMSE 0.1668 0.3810 0.1342 0.1225 0.0841 0.0797 0.0878

MAPE 0.0360 0.1033 0.0372 0.0300 0.0169 0.0161 0.0167

AI 0.5544 0.8381 0.5605 0.4435 0.0548 − 0.0403

These findings indicate that the combined forecasting model can effectively predict the 
iron ore demand and that the forecasting accuracy reaches a higher level based on these 
intelligent optimization algorithms. In addition, the evaluation results clearly show how ex-
cellent forecasting performance can be achieved by the PSO combined forecasting model.

3.3.4. Comparison of forecasting accuracy

The forecasting accuracy of the iron ore demand of 11 models from three previous stu-
dies was compared with that of the PSO combined model in Table 3. The proposed PSO 

Table 3. Accuracy assessment of different forecasting models for iron ore demand

Tabela 3. Prognozowane wyniki poszczególnych modeli i modeli połączonych

Forecasting models
Evaluation index

References
MAPE (%)

Panel model  7.84

Jia and Xu 
2014

grey model (gM) 12.84

Co-integration model 14.11

ARIMA model 16.13

gM(1,1) 16.88

Ma et al. 
2013

PSO-gM(1,1) 14.45

Rolling gM(1,1)  6.70

PSO-rolling gM(1,1)  2.31

SARIMA (seasonal autoregressive integrated moving average)  6.33
Wang et al. 

2020NARNN (non-linear autoregressive neural network)  6.32

EMD (empirical mode decomposition)-NARNN-ARIMA  3.69

PSO combined model (the model of this paper)  1.61 −
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combined model outperformed the other 11 models, suggesting that it has certain advan-
tages in forecasting the iron ore demand. The PSO combined model performed better than 
the 10 individual models in Table 3 because it combined nonlinear and linear models to 
pick up nonlinear and linear information from iron ore demand time series for forecasting. 
This decreases the differences between the actual and forecast values. As seen, the EMD- 
-NARNN-ARIMA provided better forecasts than its constituent models, and this proves 
the effectiveness of the combination model again. From Table 3, the difference of MAPE 
between the PSO combined model and the EMD-NARNN-ARIMA combined model which 
shows that the PSO combined model is more suitable to forecast the iron ore demand. It 
also proves that its constituent models (HW, ARIMA, SVM, and ELM) chosen for iron ore 
demand forecasting are reasonable. These results again demonstrate that the PSO combined 
forecasting model performs better in iron ore demand forecasting.

conclusions

With the vigorous development of China’s industry, the stable supply of energy resources 
is very important. One of the most important sources of energy are iron ore resources. From 
the industrialization initial stage to the industrialization middle period, China’s iron ore 
demand will inevitably experience some changes. Therefore, the accurate forecast of iron 
ore demand is of great significance to the industrialization development in China and even 
the world.

Iron ore demand is greatly influenced by national politics and the economy, complex 
characteristics such as uncertainty, nonlinearity and dynamism make forecasting more 
difficult. And an individual model cannot always accurately forecast the complex iron ore 
demand time series. The use of combined models can also reduce the risk of choosing an 
inappropriate model. The intelligent optimization algorithm can find the optimal weights of 
combined forecasting. In this study, the paper uses three quite mature intelligent optimiza-
tion algorithms in engineering applications to determine the optimum weighted coefficients 
of the HW, ARIMA, SVM and ELM to forecast the iron ore demand. The HW and ARIMA 
models are selected because they can capture the linear features of time series data, and the 
SVM and ELM can obtain the nonlinear features of the iron ore demand. Therefore, based 
on intelligent optimization algorithms, the combination of the four models can reduce infor-
mation loss and improve forecasting accuracy. 

Combined forecasting models of iron ore demand are superior to individual models. This 
conclusion can be obtained from the MAE, MAPE and RMSE values. Notably, the evalua-
tion results of the PSO combined model are better than the other models, and the forecasting 
accuracy improved by  55.44%, 83.81%, 56.05%, 44.35%, 5.48% and 4.03% when compared 
with the HW, ARIMA, SVM, ELM, gA and SA combined model, respectively. This im-
provement is closely related to the main objective of PSO algorithm. Therefore, there are 
theoretical and practical foundations to prove that the PSO combined model is the optimal 
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forecasting model for iron ore demand. Moreover, the PSO combined model can also be 
applied to predict the demand for coal and other types of energy because of its good genera- 
lization capability and strong robustness. It is a promising predictive tool.
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combined modelling for iron ore demand forecasting 
witH intelligent optimization algoritHms

K e y w o r d s

iron ore demand, combined model, intelligent optimization algorithm, forecasting accuracy

A b s t r a c t 

The stable supply of iron ore resources is not only related to energy security, but also to a country’s 
sustainable development. The accurate forecast of iron ore demand is of great significance to the in-
dustrialization development of a country and even the world. Researchers have not yet reached a con-
sensus about the methods of forecasting iron ore demand. Combining different algorithms and making 
full use of the advantages of each algorithm is an effective way to develop a prediction model with 
high accuracy, reliability and generalization performance. The traditional statistical and econometric 
techniques of the Holt–Winters (HW) non-seasonal exponential smoothing model and autoregressive 
integrated moving average (ARIMA) model can capture linear processes in data time series. The 
machine learning methods of support vector machine (SVM) and extreme learning machine (ELM) 
have the ability to obtain nonlinear features from data of iron ore demand. The advantages of the 
HW, ARIMA, SVM, and ELM methods are combined in various degrees by intelligent optimization 
algorithms, including the genetic algorithm (gA), particle swarm optimization (PSO) algorithm and 
simulated annealing (SA) algorithm. Then the combined forecast models are constructed. The con-
trastive results clearly show that how a high forecasting accuracy and an excellent robustness could 
be achieved by the particle swarm optimization algorithm combined model, it is more suitable for 
predicting data pertaining to the iron ore demand.
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Modelowanie do prognozowania popytu na rudę żelaza 
połączone z inteligentnyMi algorytMaMi optyMalizacji

S ł o w a  k l u c z o w e

zapotrzebowanie na rudę żelaza, model połączony,  
inteligentny algorytm optymalizacji, dokładność prognozowania

S t r e s z c z e n i e 

Stabilne dostawy zasobów rudy żelaza związane są nie tylko z bezpieczeństwem energetycznym, 
ale także ze zrównoważonym rozwojem kraju. Dokładna prognoza zapotrzebowania na rudę żelaza 
ma ogromne znaczenie dla rozwoju industrializacji kraju, a nawet świata. Naukowcy nie osiągnęli 
jeszcze konsensusu co do metod prognozowania popytu na rudę żelaza. Łączenie różnych algoryt-
mów i pełne wykorzystanie zalet każdego algorytmu to skuteczny sposób na opracowanie mode-
lu predykcyjnego o wysokiej dokładności i niezawodności. W tej publikacji, model Holta-Wintersa 
(HW) do wygładzania szeregów czasowych, w których występują wahania przypadkowe, jak również 
autoregresyjny zintegrowany model średniej ruchomej (ARIMA), a także maszyna wektorów noś- 
nych (SVM) i maszyna do ekstremalnego uczenia się (ELM), zostały połączone w celu uchwycenia 
różnych relacji i charakterystyk na podstawie danych szeregów czasowych, aby dokładnie przewi-
dzieć zapotrzebowanie na rudę żelaza. Zalety czterech algorytmów są w różnym stopniu łączone 
przez inteligentne algorytmy optymalizacji, w tym algorytm genetyczny, algorytm optymalizacji roju 
cząstek oraz algorytm symulowanego wyżarzania. Następnie konstruowane są połączone modele. 
Kontrastowe wyniki wyraźnie pokazują, w jaki sposób można osiągnąć wysoką dokładność progno-
zowania i doskonałą solidność za pomocą połączonego modelu algorytmu genetycznego. Model taki 
jest bardziej odpowiedni do przewidywania danych dotyczących zapotrzebowania na rudę żelaza. 
Opierając się na prognozowanych wynikach połączonego modelu algorytmu genetycznego, możemy 
stwierdzić, że oczekuje się, iż krajowy popyt na rudę żelaza będzie w przyszłości wykazywał tenden-
cję rozwojową w postaci trwałego, ale powolnego wzrostu.
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