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Load identification method of ball mill based  
on the CEEMDAN-wavelet threshold-PMMFE

Introduction

Ball mill plays a vital role in the grinding operation and the mill will inevitably bear the 
workload during operation. The mill load can thus be considered to be an important param-
eter that directly affects the grinding effect and grinding efficiency (Tang et al. 2013). Due 
to the complex and changeable working environment inside the cylinder during the grind-
ing process, the problem of difficult load identification of ball mills is common in current 
grinding operations (Tang et al. 2011; Zhao et al. 2017). The commonly used method is to 
take the vibration signal of the mill bearing, cylinder, base and other parts as the research 
object (Tang et al. 2012), and realize the load state identification of the ball mill by analyzing 
the relationship between the vibration signal characteristics and the load of the ball mill.  
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At the same time, in view of the characteristics of vibration signals of ball mills and the 
limitations of current commonly used signal processing methods, Luo Xiaoyan et al. (2016) 
proposes a new idea of wavelet analysis applied to the extraction of vibration signal charac-
teristics of mill bearings. Tang Jian et al. (2014) introduces the EMD algorithm to analyze 
the vibration signal of mill, and combines multi-scale spectrum and partial least squares 
algorithm to establish a soft measurement model to successfully identify the grinding load. 
Zhao Lijie (2014) introduces the EEMD algorithm into the vibration signal processing 
procedure of the ball mill; The above method has certain effects in feature extraction and 
load identification, but the high-dimensional spectral features make the establishment of 
a load-identification model difficult. The determination of the optimal parameters of wavelet 
analysis will affect the accuracy of the identification of the load state of the ball mill. Both 
the EMD algorithm and the EEMD algorithm have modal aliasing in the process of signal 
decomposition, resulting in unsatisfactory modeling accuracy.

Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 
can obtain the IMF component by EMD decomposition of the added Gaussian white noise 
during the decomposition process (Torres et al. 2011), replacing the Gaussian white noise 
added each time during the EEMD decomposition process to achieve adaptive addition 
noise. This method not only makes up for the shortcomings of the modal aliasing of EMD 
algorithm and the EEMD algorithm but also improves the completeness of decomposi-
tion; however, there is a defect of discarding components in the process of CEEMDAn 
denoising. Cai Gaipin et al. (2019) for the ball mill cylinder vibration signal nonlinearity, 
non-smoothness characteristics, as well as the shortcomings of CEEMDAn denoising, pro-
posed a CEEMDAn-wavelet threshold joint denoising method, and through the measured 
signals to verify the effectiveness of the method.

Fuzzy entropy (FE) is a measure of discrete time series complexity and has been widely 
used in the fault diagnosis of rotating machinery equipment (Chen Weiting et al. 2009; Zheng 
Jinde et al. 2016). Multi-scale fuzzy entropy (MFE) is a calculation of fuzzy entropy values 
for discrete time series at multiple scales (Wang Hongjun et al. 2019), which has better anti-in-
terference ability and adaptability than fuzzy entropy. Yang Wangcan et al. proposed a fault 
diagnosis method based on EEMD multi-scale fuzzy entropy (Yang Wangcan et al. 2015) and 
proved that the method can effectively improve the fault diagnosis accuracy by analyzing the 
fault results. Li Baoqing et al. combined the adaptive sparsest time-frequency analysis method 
with multi-scale fuzzy mean entropy (PMMFE) to analyze gear faults to realize the identifi-
cation of gear faults (Li Baoqing et al. 2016). Although some scholars in China have achieved 
good results in applying multi-scale fuzzy entropy partial mean to the fault diagnosis of rotat-
ing machinery, there are few studies on its application with regard to mill load identification.

Combined with the superiority of the CEEMDAn-wavelet threshold combined denoising 
method and the strong anti-interference ability of PMMFE, a load identification method for 
ball mill based on CEEMDAn-wavelet threshold-PMMFE is proposed. At the same time, 
the least squares support vector machine (LSSVM) algorithm is introduced to identify the 
load of the feature vector composed of entropy features (Chang Yufang et al. 2013; Wang 
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et al. 2023) and the recognition accuracy of the method is observed. Through the vibration 
signal analysis of the measured mill, the proposed method is compared with the single fuzzy 
entropy feature, multi-scale fuzzy entropy feature and multi-scale fuzzy entropy partial 
mean feature by LSSVM algorithm for load identification, and the results show that the 
proposed method has the highest load recognition accuracy.

1. Basic principle

1.1. CEEMDAN-wavelet threshold combined denoising method

In the process of denoising, the CEEMDAn-wavelet threshold combined denoising method 
only denoises the high-frequency IMF components with more noise instead of the entire signal 
(Donoho et al. 1994; Zheng Jinde 2014). Therefore, while achieving the purpose of eliminating 
noise, the useful features in the signal are well retained. Its main steps are as follows.
1. I-th experiments were performed on the noisy signal x(t) + ε0νi(t), and 1( )IMF t  was ob-

tained by EMD.
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4. For the remaining stages, i.e. k = 2, ..., K, in line with the calculation process in Step 3, the 
kth residual signal is calculated first, and then the k + 1 st modal component is calculated.
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5. Repeat Step 4 until the number of poles of the obtained margin signal is less than two, 
and the algorithm ends. At this point, the number of all modal functions is k, and the 
original signal sequence x(t) is decomposed into the following:
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6. The continuous mean squared error criterion is used to determine the high-frequency 
IMF component with more noise in the decomposed IMF component and select the pa-
rameters of the appropriate wavelet to denoise the high-frequency IMF component with 
more noise.

7. The denoising IMF component and the undenoising IMF component were reconstructed 
to obtain the signal x'(t) after denoising by the joint denoising method.
In the above equations: EK(⋅): the k-th modal component obtained by EMD decomposi-

tion; ( )kc t : the k-th modal component produced by CEEMDAN; νi: Gaussian white noise 
obeying n; ε: The standard deviation of white Gaussian noise.

1.2. PMMFE algorithm

Multi-scale fuzzy entropy is developed based on multi-scale entropy on the basis of fuzzy 
entropy and the process is to coarse-grain the original time series, construct a multi-scale 
time series, and then calculate the fuzzy values at each scale. For a time series X = {x(i),  
i = 1, 2, ..., N} the specific steps are as follows:
1. Given the embedding dimension m and similar volume r in advance, the time series  

X = {x(i), i = 1, 2, ..., N} is coarse-grained to obtain the processed coarse-grained se-
quence:
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ªª s  – scale factor; 
ys( j) – time series under different scale factors.

2. Calculate the fuzzy entropy of each coarse-grained sequence and reduce it as a func-
tion of the scale factor s. When calculating the fuzzy entropy for each coarse-grained 
sequence, the similar volume r is unchanged, usually r takes 0.1 ~ 0.25SD (SD is the 
standard deviation of the original signal).

Multi-scale fuzzy entropy partial mean is a kind of characteristic value based on mul-
ti-scale fuzzy entropy that reflects the trend of signal fuzzy entropy with scale change 
and the nonlinear information of time series at multiple scales; its calculation formula is 
as follows:
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 ( )1 ( ) 3 ( )= + ⋅PMMFE ske MFE mean MFE  (8)

ªª MFE  – multi-scale fuzzy entropy of the signal under a certain time-scale factor s. 
ske(MFE) – skewness of the multiscale fuzzy entropy value.

1.3. LSSVM algorithm

The least squares support vector machine (LSSVM) is an improved algorithm of a sup-
port vector machine (SVM) based on statistical theory, which uses the least squares method 
to solve the model parameters, which effectively improves the computational efficiency; its 
main steps are as follows:
1. Processed for a given set of training samples S = {(x1,y1), (x2,y2), ..., (xn,yn)} and assum-

ing a model.

 ( ) ( )= ⋅∅ +Tf x w x b  (9)

ªª x – input feature vector;
Øx – mapping function that maps the input samples to the high-dimensional  

   feature space;
w – weight vector corresponding to the feature vector, and b is the bias term.

2. Find a hyperplane such that all sample points are as close as possible to this hyperplane, 
and then solve for the hyperplane parameters by minimizing the following optimization 
problem.
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ªª ei  – relaxation variable;
C – regularization parameter.

3. Introduce the Lagrange multiplier and derive it so that its derivative is zero.
4. Eventually, the LSSVM regression function can be built.
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ªª αi   – Lagrange multiplier; 
k(xi,x)  – kernel function.
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1.4. ReliefF algorithm

The ReliefF weighted feature selection algorithm is an improved method of feature se-
lection that can deal with multiclassification problems in view of the limitation that the Re-
lief algorithm can only be applied to the selection of features for two types of data, and was 
proposed by Kononeill in 1994 (Kononerko 1994). It calculates the weights of the feature 
parameters and judges the correlation between the feature parameters and the categories 
according to the size of the weights. Its specific implementation steps are as follows:

Input: training sample set D, number of iterations m, number of nearest neighbour sam-
ples k; 

Output: vector of weights w for each feature parameter.
1. Initialisation: w = 0;
2. Arbitrarily select a sample R among the feature matrix samples and find the k near-

est-neighbour samples Hi of the same class as it and the K nearest-neighbour samples Mi 
(i = 1, 2, 3, ..., k) of a different class, respectively;

3. For all feature samples Fj ( j = 1, 2, 3, ..., J) of sample R in turn, update the weights of each 
feature parameter; 
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 ( )( , , ) ( , ) ( , ) max( ) min( )= − −j i j j i j jdiff F R M Value F R Value F M F F  (14)

ªª Value(Mi,A) – value of the j-th feature of sample A; 
A     – can be taken as R, Hi or Mi; 
diff    – Euclidean distance between two samples.

4. Cycle Steps (1) to (3) m times, i.e., randomly select m samples for the computation of 
weight vectors, so as to obtain the weight vectors w of each feature parameter.

2. Experimental analysis of mill load characteristic extraction

2.1. Ball mill bearing vibration signal collection

In this experiment, the Bond index ball mill with a model of Φ305 × 305 mm was used 
as the object to simulate the grinding operation, and the vibration signal acquisition system 
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was built according to the existing conditions of the laboratory. Among them, the bearing vi-
bration signal acquisition system is mainly composed of a DH5922n dynamic data collector, 
a DH131 vibration acceleration sensor, a DH5857-1 charge adapter, a frequency converter, 
an energy meter and a PC, and the structural block diagram of the vibration signal acquisi-
tion system is shown in Figure 1.

Ten sets of vibration signals of bearings under three conditions of underload, normal load 
and overload of ball mill were collected, and the sampling frequency during the acquisition 
process was 20kHz, and the acquisition time was set to 10 min as well as the grinding time. 
The intervals of the three load divisions are: underload (Ø ≤ 0.2; Ø = 0.3, Ψ < 0.6), normal 
load (Ø = 0.3, 0.6 ≤ Ψ ≤ 1.2; Ø = 0.4, 0.5 ≤ Ψ ≤ 0.9), overload (Ø = 0.4, 0.9 < Ψ; 0.5 ≤ Ø), 
where Ø represents the filling rate and Ψ represents the ratio of the material to the ball. 

In the grinding experiment, the speed of the ball mill is set to 48 r/min, and it is known 
that the time required for the cylinder to rotate for one week is about 1.25 s. In the process 
of signal processing analysis, in order to ensure that the signal characteristic parameters can 
fully reflect the load of the ball mill, the length of the signal processing analysis selects the 
sampling signal of the ball mill running for about eight cycles, and the bearing vibration 
signal with a duration of about 10s to ensure the reliability of the characteristic parameters 
obtained during the signal analysis process. The waveform diagram of the vibration signal of 
the ball mill bearing under three different load parameters is as shown in Figure 2.

Converter Ball Mill Bearing Ammeter

DH131 Vibration

Acceleration

Sensor

DH5857-1 Charge

Adapter

DH5922N

Dynamic Data

Acquisition

Instrument

PC Controller

Energy Consumption

Controls
RPM control

Bearing vibration

signal acquisition

Fig. 1. Bearing vibration signal acquisition system block diagram 

Rys. 1. Schemat blokowy systemu akwizycji sygnału drgań łożyska
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From the vibration signal waveform in Figure 2, it can be seen that it is difficult to accu-
rately distinguish the load state of the ball mill only by relying on the difference in amplitude 
in the waveform diagram. Therefore, it is very important to denoise the vibration signal of 
the ball mill bearing and identify the load state of the ball mill according to the difference in 
the characteristic signal extracted after denoising.

2.2. Joint denoising method and effect analysis

Due to the wide frequency range of vibration signals generated during the grind-
ing process, and because the vibration signal of the pure ball mill barrel is unknown, the 
signal-to-noise ratio and rms error are used as the indicators to judge the denoising ef-
fect and the denoising effects of different denoising methods are compared. The wavelet 
parameters in the denoising process are set as follws: the wavelet basis function is db8, 
the number of decomposition layers is 5, the heursure criterion is adopted, and the hard 
threshold is used. The signal-to-noise ratio and root mean square error of the bearing vi-
bration signal after denoising the bearing vibration signal by CEEMDAn denoising, wave-
let threshold denoising and CEEMDAn-wavelet threshold combined denoising are shown  
in Figure 3.

It can be seen from the denoising results in Figure 3 that when the denoising method  
is the same, the evaluation index change of noise effect under the same load state is small and  
the evaluation index change of noise effect under adifferent load states is quite different. 

Fig. 2. The raw signals under the three load conditions

Rys. 2. Surowe sygnały w trzech warunkach obciążenia
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Fig. 3. The results of three different denoising methods

Rys. 3. Wyniki trzech różnych metod odszumiania
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When the load state is the same, the denoising effect of different denoising methods is dif-
ferent, and the signal after CEEMDAn-wavelet threshold combined with denoising has the 
largest signal-to-noise ratio and the smallest rms error value.

According to the criteria of the signal-to-noise ratio and rms error to evaluate the de-
noising effect, it can be seen that the CEEMDAN-wavelet threshold combined with denois-
ing has the best effect, and the CEEMDAN alone has the worst denoising effect. It shows 
that the wavelet threshold denoising method and CEEMDAn denoising method alone lose 
some effective information in the process of noise reduction, while the combined denoising 
method retains the effective information in the signal to the greatest extent while reducing  
noise.

2.3. Feature extraction and analysis of entropy

Firstly, the ability to distinguish different load states of the mill with fuzzy entropy as 
a characteristic index is analyzed. Thirty sets of experimental data are denoised; Then, 
in accordance with the fuzzy entropy calculation step, the fuzzy entropy of each group of 
samples under the load state of three different mills is obtained. In the process of calculating 
fuzzy entropy, the embedding dimension m and the similar tolerance r are important factors 
affecting the entropy value.

The value of the embedding dimension m is too small, there are fewer features in the 
reconstructed signal contained in the signal and the algorithm fails. The value of the em-
bedding dimension m is too large, the data length required for calculation is longer, and the 
features contained in the reconstruction signal are too redundant, which is not easy to dis-
tinguish the change of the signal, and also increases the amount of calculation. Usually, the 
relationship between data length N and embedding dimension m is N = 10m ~ 30m, but in this 
paper, the data length is selected as 200,000 in the analysis process, so m = 6 is considered 
comprehensively.

The similarity tolerance r indicates the width of the fuzzy function boundary. If r is 
too big, a lot of statistical information will be lost; if r is too small, the estimated statistical 
characteristics are not ideal and there is an increase in sensitivity to the resulting noise. 
Therefore, r generally takes 0.1 ~ 0.25 SD (SD is the standard deviation of the original data), 
and in this paper, we take r = 0.15 SD.

The distribution of fuzzy entropy values under different load conditions is shown in 
Figure 4.

From Figure 4, the fuzzy entropy values of ball mill vibration signals under different 
load states have different fluctuation intervals and fluctuation amplitudes. The fuzzy entro-
py value as a feature can distinguish the normal load and abnormal load state, but the ball 
mill grinding is a continuous process, and the underload and overload state under abnormal 
load have different load parameters to be adjusted, and improper operation will not only 
reduce the efficiency of grinding but will also cause production accidents in serious cases.  
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Therefore, the direct use of fuzzy entropy as the eigenvalue of ball mill load state identifica-
tion may be a cause of misjudgment.

In view of the fact that it may be difficult to accurately judge the load state of the ball 
mill by using a single fuzzy entropy value as the eigenvalue of the bearing vibration sig-
nals, multiscale fuzzy entropy is used as the eigenvalue to analyze the load of the mill. The 
embedding dimension m = 6, the similarity tolerance r = 0.15 SD, and the maximum scale 
factor s = 15 are adopted in the calculation process. Limited to space, the multiscale fuzzy 
entropy values of three groups of signals are selected for each load state and the results are 
shown in Figure 5.

Fig. 4. The fuzzy entropy value of experimental data in different load conditions

Rys. 4. Wartość entropii rozmytej danych eksperymentalnych w różnych warunkach obciążenia

Fig. 5. The MFE of vibration signal under different load conditions

Rys. 5. MFE sygnału drgań w różnych warunkach obciążenia
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As can be seen from the change curves in Figure 5, although the overall trend of the 
fuzzy entropy value of the vibration signals with the scale factor under different load states 
is consistent overall, the change intervals of the entropy value are different. Furthermore, 
the fluctuation zone of the multi-scale fuzzy entropy value under the overload state has 
no obvious boundaries compared with the fluctuation zones under the other two load 
states, and there is some overlap and crossover. Therefore the direct adoption of multi- 
-scale fuzzy entropy as the eigenvalue of ball mill load state identification may be a source  
of misjudgment.

In order to comprehensively analyze the complexity and randomness of mill vibra-
tion signals on different scales, the multiscale fuzzy entropy partial mean values of vi-
bration signals under different load states are calculated respectively, in which twenty 
groups of signals are selected for analysis under each load state and the results are shown  
in Figure 6.

As can be seen from Figure 6, there are some differences in the distribution of multi-scale 
fuzzy entropy of ball mill vibration signals in different loading states. The multi-scale fuzzy 
entropy of ball mill bearing vibration signals in the under-loaded state is the largest, the 
multi-scale fuzzy entropy of bearing vibration signals in the over-loaded state is the small-
est, and the multi-scale fuzzy entropy of normal loading state ball mill bearing vibration 
signals is relatively moderate. Moreover, the difference of the partial mean value under sim-
ilar load condition is small, and the difference of the partial mean value under different load  
conditions is large. Comparing Figure 5 and 6, it can be observed that the fluctuation ampli-
tude of multi-scale fuzzy entropy partial mean values under different load states is smaller 
compared with that of multi-scale fuzzy entropy values and the boundaries of fluctuation 
intervals are more obvious.

Fig. 6. The PMMFE of experimental data under different load conditions

Rys. 6. PMMFE danych eksperymentalnych w różnych warunkach obciążenia
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3. Construction of feature vectors  
and the identification of mill load states

3.1. Construction of eigenvector

Grinding is a nonlinear, strongly coupled and complex process, and there may be some 
option to identify the mill load state by using the multiscale fuzzy entropy skewed mean val-
ue as the mill load eigenvalue alone (Ren Weihe et al. 2023; Zhu Jin et al. 2023). Therefore, 
in order to accurately identify the ball mill load state, the ReliefF weighted feature selection 
algorithm is used to select two fuzzy entropy values with higher sensitivity to the mill load 
from the multiscale fuzzy entropy values, and combined with the multiscale fuzzy entropy 
skewed mean value, a three-dimensional mill load eigenvector is jointly constructed.

The sample set consists of fifteen entropy value feature parameters of the vibration sig-
nals of mill bearings under three different types of load (underload, normal load, overload) 
states together, twenty groups of samples for each load state, and the feature data is fif-
teen dimensions, which constitutes a 60 × 15 dimensional feature set inputted into ReliefF 
weighted feature selection algorithm. The weighting values between the fuzzy entropy and 
the load categories under each scale factor in the multi-scale fuzzy entropy value were ob-
tained and the results are shown in Figure 7.

As can be seen from Figure 7, the weight value of the fuzzy entropy value in the mul-
ti-scale fuzzy entropy value when the scale factor is 3 and 5 is larger, which is 0.4207 and 
0.4342, respectively, indicating that the fuzzy entropy value of the multi-scale fuzzy entropy 
value under the scale factor of 3 and 5 has a higher sensitivity to the change of the state  

Fig. 7. ReliefF algorithm calculates the weights of the fuzzy entropy under the scale factors of vibration signals

Rys. 7. Algorytm ReliefF oblicza wagi entropii rozmytej w ramach współczynników skali sygnałów drganiowych
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of the mill load. In order to reduce the amount of computation in the process of load iden-
tification, the fuzzy entropy value and the multiscale fuzzy entropy bias mean value of the 
multiscale fuzzy entropy value at scale factor 3 and 5 are selected as the eigenvalues of the 
mill load to construct the eigenvectors for the mill load identification, and the obtained ei-
genvectors are as follows: Multi-scale fuzzy entropy value with scale factor 3, Multi-scale 
fuzzy entropy value with scale factor 5, Multi-scale fuzzy entropy skewed mean value.

3.2. Mill load state identification

In order to verify the feasibility of the constructed feature vectors, the mill load feature 
vectors are used as the input of the LSSVM algorithm, and the mill load state is used as the 
output to establish the mill load recognition model.

In the process of load recognition, thirty groups of vibration signals are selected for 
each mill load state for mill load feature vector extraction, and a 90 × 3 dimensional feature 
vector matrix is constructed in which fifteen groups are selected for each load state as test 
samples and the remaining samples are recognized as test samples. In order to verify the 
effect of the denoising effect and the influence of feature parameters on the accuracy of load 
recognition, the feature vectors obtained by different denoising methods are recognized us-
ing the LSSVM algorithm, and the load recognition results of different methods are obtained 
as shown in Table 1.

As can be seen from Table 1, comparing the load recognition results of serial numbers 
1, 2, 3 and 4, the accuracy of direct recognition of the original vibration signal features 
is the lowest. The accuracy of mill load recognition is the highest after using the joint  
CEEMDAn-wavelet thresholding method of denoising the vibration signals, and the ac-
curacy of the recognition is increased by 22.2%, 17.7% compared to that of the denoising 

Table 1.  The recognition results of eigenvectors obtained by different methods

Tabela 1. Wyniki rozpoznawania wektorów własnych uzyskane różnymi metodami

number Denoising methods Parameterization
Load 

identification 
methods

Load 
identification 

accuracy

1 Original signal
eigenvectors 

(scale because of 
fuzzy entropy values 
of 3, 5 and PMMFE) LSSVM

62.2%

2 CEEMDAn 66.7%

3 Wavelet threshold 71.1%

4 CEEMDAn-wavelet threshold 84.4%

5 CEEMDAn-wavelet threshold FE 46.7%

6 CEEMDAn-wavelet threshold MFE 57.8%
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methods used in serial numbers 1, 2 and 3, respectively, 13.3%; and with the improvement of 
the denoising effect, the accuracy of mill load recognition also increases.

Comparing the load recognition results of serial numbers 4, 5 and 6, it can be seen that 
when the denoising methods are the same, the load recognition accuracy of the feature vec-
tor constructed in this paper is the highest, the accuracy of which reaches 84.4%. The load 
recognition accuracy of the fuzzy entropy value as the feature parameter is the lowest, which 
indicates that the selection of feature parameters is a key factor affecting the accuracy of the 
mill load recognition.

Comprehensive comparison of the above analysis results shows that the accuracy of the 
ball mill load identification method based on CEEMDAN-wavelet threshold and multi-scale 
fuzzy entropy proposed in this paper is the highest, which indicates that the feature vectors 
constructed in this paper can effectively characterize the load characteristics of the mill, and 
also verifies the effectiveness of the method used in this paper.

Conclusions

1. Aiming at the situation that there is a large amount of noise in the original signal,  
CEEMDAn, wavelet threshold denoising and CEEMDAn-wavelet threshold joint de-
noising methods are used to denoise and analyze the vibration signals under different 
loading conditions.

2. The PMMFE algorithm is proposed for feature extraction after signal preprocessing. The 
relationship between the fuzzy entropy, MFE and PMMFE of vibration signals and mill 
load is analyzed, and the results show that PMMFE can distinguish the three load states 
more accurately compared with fuzzy entropy and MFE.

3. For the CEEMDAn-wavelet threshold joint denoising method proposed in this paper 
and the CEEMDAn denoising and wavelet threshold denoising methods commonly used 
in mills, the LSSVM algorithm is introduced to compare the difference in the accura-
cy rate of mill load recognition caused by different methods. The results show that the 
recognition accuracy of the proposed CEEMDAn-wavelet thresholding joint denoising 
method is 84.4%, which improves the recognition accuracy by 17.7% and 13.3% over the  
CEEMDAn and wavelet thresholding methods, respectively.

4. Comparison of the recognition accuracy of mill loads by different feature parameter 
methods through the LSSVM algorithm shows that the result of feature vector recogni-
tion strongly depends on the method of feature parameter selection. In the same case of 
CEEMDAn-wavelet threshold joint denoising, the recognition accuracy with PMMFE 
as the feature parameter is 84.4%, which is 37.7% and 26.6% higher than that with fuzzy 
FE or MFE as the feature parameter, respectively.

This work was supported by the General Project of Ganzhou Key R&D Programme (grant num-
ber 20210112411).
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LoAD IDENtIFICAtIoN MEthoD oF BALL MILL BASED  
oN thE CEEMDAN-wAVELEt thREShoLD-PMMFE

K e y w o r d s

mill load, bearing vibration signal, CEEMDAN-wavelet threshold, PMMFE, load identification

A b s t r a c t

In order to address the difficult problem of ball mill load identification during milling operation, 
the multi-scale fuzzy entropy algorithm is introduced into ball mill load identification and an inno-
vative ball mill load identification method is proposed- the complete integrated empirical decompo-
sition based on adaptive noise (CEEMDAN)-joint denoising with wavelet thresholding-multi-scale 
fuzzy entropy biased mean value (PMMFE) ball mill load identification method. Firstly, the vibration 
signals of ball mill bearings are denoised by the CEEMDAn-wavelet threshold joint denoising meth-
od and the analysis reveals that this method has obvious advantages over other denoising methods; 
secondly, the fuzzy entropy, multi-scale fuzzy entropy, and multi-scale fuzzy entropy deviation of 
denoised vibration signals are computed, the relationship between each entropy feature and the mill 
load is analysed in-depth and in an information-rich manner. Finally, the least squares support vector 
algorithm is used to identify the load of the feature vector. The analysis of the measured vibration 
signals reveals that the overall recognition rate of this method is 84.4%, which is significantly higher 
than that of other denoising methods and the combination of feature parameters, and the experiments 
show that the mill load recognition method based on CEEMDAn-wavelet thresholding-PMMFE is 
able to effectively identify the different loading states of ball mills.

MEtoDA IDENtyFIkACJI oBCIążENIA MłyNA kuLowEgo 
w oPARCIu o CEEMDAN – PRóg FALkowy –PMMFE

S ł o w a  k l u c z o w e

obciążenie młyna, sygnał drgań łożyska, próg CEEMDAN-fala, PMMFE, identyfikacja obciążenia

S t r e s z c z e n i e

W celu rozwiązania trudnego problemu identyfikacji obciążenia młyna kulowego podczas  
operacji mielenia, do identyfikacji obciążenia młyna kulowego wprowadzono wieloskalowy algo-
rytm entropii rozmytej oraz zaproponowano innowacyjną metodę identyfikacji obciążenia młyna  
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kulowego – pełną zintegrowaną dekompozycję empiryczną opartą na szumie adaptacyjnym 
(CEEMDAN) – wspólne odszumianie z progowaniem falkowym – wieloskalowa metoda iden-
tyfikacji obciążenia młyna kulowego metodą rozmytej entropii z odchyleniem wartości średniej  
(PMMFE). Po pierwsze, sygnały wibracyjne łożysk młyna kulowego są odszumiane za pomocą 
wspólnej metody odszumiania CEEMDAN z progowaniem falkowym, a analiza pokazuje, że me-
toda ta ma oczywiste zalety w porównaniu z innymi metodami odszumiania; po drugie, obliczana 
jest rozmyta entropia, wieloskalowa rozmyta entropia i wieloskalowe rozmyte odchylenie entropii 
odszumionych sygnałów wibracyjnych, a związek między każdą cechą entropii a obciążeniem młyna 
jest analizowany dogłębnie i w sposób bogaty w informacje. Na koniec, algorytm wektora wsparcia 
najmniejszych kwadratów jest wykorzystywany do identyfikacji obciążenia wektora cech. Anali-
za zmierzonych sygnałów wibracyjnych pokazuje, że ogólny wskaźnik rozpoznawania tej metody 
wynosi 84,4%, co jest znacznie wyższe niż w przypadku innych metod odszumiania i kombinacji 
parametrów cech, a eksperymenty pokazują, że metoda rozpoznawania obciążenia młyna oparta na 
progowaniu falkowym CEEMDAN-PMMFE jest w stanie skutecznie identyfikować różne stany ob-
ciążenia młynów kulowych.


