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Introduction

A ball mill is key equipment in the ore dressing process (Bortnowski et  al. 2021; 
Yang et al. 2024), which improves the recovery and yield of useful minerals by grinding 
the materials, but the grinding operation often consumes a large amount of energy (Gupta 
et al. 2020), so it is important to research the load identification method of the mill to make 
the ball mill always maintain in the normal state for the improvement of grinding energy 
efficiency.

Current methods of mill load identification primarily utilize various indirect detection 
techniques. Wang et al. (2021) used an integrated empirical modal decomposition method to 
decompose the grinding signals, reconstructed the grinding sound signals by suitable IMF 
components and extracted the box fractal dimension features, and proposed an optimized 
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limit learning machine method to effectively identify the mill loads. Cai et al. (2019) proposed 
a method based on improved empirical wavelet transform, multi-scale fuzzy entropy, and 
adaptive evolutionary particle swarm optimization probabilistic neural network classification 
for ball mill load identification. Huang et al. (2020) proposed improved integrated multi- 
-classifier modeling, which sequentially fuses the recognition results of multiple classifiers 
and multiple sensors to be applied to measure ball mill loads.

The above machine learning method using one-dimensional signals can realize the 
recognition of ball mill loads, but it is limited by the manual extraction of features and also 
fails to consider the influence of time domain and frequency domain information at the same 
time.With the development of deep learning methods, neural networks can automatically 
learn features from data without the need for manual extraction (Hoang et  al. 2020; Shi 
et al. 2020). Xu et al. (2022) demonstrated the time series of ball mill acceleration vibration 
signals in the form of two-dimensional images, fed into a VGG19 network model to achieve 
end-to-end classification of operating conditions. Meanwhile, converting a one-dimensional 
signal into a  time-frequency graph analysis allows for the simultaneous acquisition of 
features in both the time and frequency domains. Shao et al. (2019) proposed a deep neural 
network for fault diagnosis of induction, bearings, and gearboxes by converting raw data 
into images to obtain time-frequency distributions through wavelet transform. Wang et al. 
(2019) the raw acceleration signals were converted into time-frequency images using eight 
methods, such as STFT and instantaneous frequency, and trained the model with a neural 
network structure modified by AlexNet (Krizhevsky et al. 2012). Kong et al. (2023) proposed 
a deep neural network based on the Mel spectrogram of grinding sound signals as input and 
a Resnet network (He et al.2016) to recognize mill load.

The model’s accuracy can be improved due to the fusion of multiple signals to provide 
different information (Ali et al. 2019). In this paper, by combining CVR and MBVR, which 
are two load parameters that affect the operating state of ball mills, and considering to reduce 
the complexity of model training, we propose an improved residual fusion network for ball 
mill load identification. By comparing with mainstream networks (VGG (Xu et al. 2022), 
CNN (Alzubaidi et al. 2021), AlexNet (Krizhevsky et al. 2012), GoogLeNet (Ak et al. 2022) 
and ResNet (He et al. 2016)), we conduct experiments, along with ablation experiments, to 
verify the superiority of the method in this paper. The main contributions of this paper are 
as follows.

1.	 In this paper, the ball mill cylinder vibration signal and acoustic signal in the grinding 
process are collected simultaneously, and the one-dimensional raw signal is converted 
into a two-dimensional time-frequency map for fusion training.

2.	 This study proposes an improved residual fusion network method for identifying 
load states with a multi-signal merging approach under different CVR and different 
MBVR. The improved residual fusion network obtains higher accuracy than 
individual signals and other multi-signal approaches.

3.	 A comparison was made with the proposed method through classical deep learning 
methods and ablation experiments to validate the better results of the proposed model.
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1. Related work

1.1. Continuous wavelet transform

Continuous Wavelet Transform (CWT) (Zhang et al.2021) is a time-frequency localized 
analysis method in which both time and frequency windows can be varied. This property 
makes the CWT adaptive to the signal, overcoming the disadvantage of the STFT, which 
cannot be localized in the time and frequency domains.

This paper focuses on the ball mill’s cylinder vibration signal and acoustic signal 
processing, using CWT for time-frequency analysis. The key of CWT lies in the selection of 
the wavelet basis function.

For an arbitrary space, the CWT of a function f(t) is defined as:

	 1( , ) ( ) t TCWT a T f t dt
aa
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ªª a		  –	 the scale factor,
T		  –	 the translation factor,
φa,T	 –	 the wavelet basis function.

Since Morlet wavelet has a good balance between time and frequency localization, this 
paper proposes to use Morlet wavelet, the specific wavelet basis function is “cmor3-3”.

1.2. Residual networks

An increase in the number of neural network layers can make the network difficult to 
train, affect the training accuracy, and lead to network degradation. To solve this problem, 
He et al. (2016) proposed a residual network (ResNet) structure, which utilizes ResNet using 
shortcut connections to achieve a  stacked composition of multiple residual modules with 
constant mapping of the network layers.

The residual unit focuses on the neural network locally by fitting a residual mapping: 
as in Figure 1, assuming X is the original input and H(X) is the desired ideal mapping, the 
residual unit is needed to fit the residual mapping F(X), a mapping that is often easier to 
optimize in reality. In the residual cell, inputs can be propagated forward faster through 
cross-layer data lines. It effectively reduces the mapping learning difficulty and speeds up 
the convergence of the model.
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1.3. Depthwise separable convolution

Depthwise separable convolution (DSC) (Liu et al. 2022) utilizes the reduction of 
computational complexity and number of parameters to improve the performance of neural 
networks. Firstly, through the depthwise convolution operation, the convolution operation 
of the single-channel convolution kernel is carried out on each channel of the input samples 
to obtain the same number of feature maps as the number of input channels to significantly 
reduce the parameter size and the amount of operations in the network; secondly, the 
pointwise convolution operation utilizes the conventional convolution kernel size of 1 × 1 
to combine the information of different channels at the same pixel position and generate 
the final required feature maps to achieve the purpose of combining the information of 
different channels. Secondly, in pointwise convolution, a conventional convolution operation 
with a kernel size of 1 × 1 is used to combine the information of different channels at the 
same pixel position and generate the final required feature map to realize the purpose of 
combining the information of different channels.

depthwise convolution pointwise convolution Output FeaturesInput Features

Fig. 2. Depthwise separable convolutional structure

Rys. 2. Rozdzielna struktura splotowa
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At feature input, are used as the height and width of the map, the number of channels  
is M, and the size of the convolution kernel is K. At output feature, the number of channels is N, 
and the height and width of the feature map after deep convolution, and the parametric 
quantities of the ordinary convolution and the DSC as C1 = H × W  × M × K × K × N,  
C2 = H × W × M × K × K × M × N, respectively, the resulting ratio is:

	 2
2

2
1

( ) 1 1C H W M K N
C H W M N K K N K

⋅ ⋅ ⋅ +
= = +

⋅ ⋅ ⋅ ⋅ ⋅

� (3)

Equation (3) shows that compared with the standard convolution, DSC can reduce 
computational complexity and the number of required parameters by splitting the convolution 
into depthwise convolution and pointwise convolution. This alleviates the overfitting 
phenomenon and improves the model generalization ability.

1.4. Hardswish activation function

The addition of Hardswish activation function can enhance the network nonlinear 
ability, which improves the expressive ability of the neural network and effectively alleviates 
the problem of neuronal necrosis of ReLU activation function (Jin et al. 2023). It has the 
advantage of good numerical stability and fast computational speed. It can also extract the 
main information of the maximum pooling layer in the image while reducing the number 
of operations and can be used as a segmentation function to reduce the number of memory 
accesses.

Therefore, in order to improve the ability of ball mill load identification, after improving 
the residual network by using DSC, the Hardswish activation function is used to replace the 
ReLU activation function in the network and combined with Dropout to further improve the 
robustness and generalization ability of the model. The Hardswish activation function f(x) is:

	 ( )min max(0, 3), 6
( )

6
 x  

f x x
+

=
� (4)

f(x) generates a nonlinear feature mapping by truncating and normalizing the input x 
to 1/6 in the range [0, 6] after shifting the input x by 3, thus filtering the input data x and 
effectively controlling its transmission from the bottom to the top.

2. Improvement of mill load identification by residual network

This section first describes the acquisition and conversion of raw data during mill 
operation. In order to compare the network performance under single and multiple signals, 
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the improved residual network under different signal input modes is established, and the 
feasibility of the improved residual fusion network under the proposed merging mode is 
subsequently verified in comparison with other classical network models. The processing 
flow of the signals in this paper is shown in Figure 3, where cylinder vibration and acoustic 
signals are collected simultaneously during ball mill operation, and the raw time-domain 
signals are converted into time-frequency images by CWT, and then VGG, CNN, AlexNet, 
GoogLeNet, ResNet, and the improved residual network model in this paper are trained 
using single, and multiple signals and the results are evaluated.

2.1. Signal Acquisition and Conversion Process of Experimental Ball Mill

Using an experimental ball mill with a motor power of 0.75 kW, the operating conditions 
of the ball mill were classified into nine categories based on nine operating conditions 
combining low, medium, and high CVR and low, medium, and high MBVR. Acceleration 
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sensors were utilized to collect mill cylinder vibration signals, and sound sensors were used 
to collect acoustic signals at the same time, with a  sampling rate of 20,000 Hz for both 
sensors. The complete acquisition process is shown in Figure 4. The raw time domain signal 
was composed of one sample per 2048 data points with a sliding window step of 1,500, and 
the raw signal was converted into a time-frequency image using CWT. Each category was 
randomly divided into 80% for training data and 20% for test data.

2.2. Training models

In order to compare the results using single and multiple signals, different improved 
residual networks are proposed by improving the ResNet18 model through 3 aspects: DSC, 
dropout, and Hardswish activation function. In the single-signal approach, the network 
is trained separately and independently using mill cylinder vibration signals and acoustic 
signals, the structure of which is shown in Figure 5. First, a single-signal time-frequency 
image is an input, and features are initially extracted using a depth-separable convolutional 
layer, which significantly improves computational efficiency, reduces the number of 
parameters, and enhances the stability and performance of the model through a combination 
of batch normalization, depth-separable convolutional kernel, batch normalization, and 
Hardswish activation function while maintaining effective feature extraction. Next, the 
preliminary extracted features are sequentially fed into the improved residual blocks IRBB1 
and IRBB2 to achieve further efficient and stable feature extraction, and the feature maps 
are converted into one-dimensional vectors through the global average pooling layer. To 
prevent overfitting of the network, a dropout layer is added after the GAP in which 20% of 
the neurons are randomly closed. Finally, the load identification results are output through 
a fully connected layer with a softmax activation function.

For the multi-signal approach using both vibration and acoustic signals, different 
fusion methods are proposed to train the improved residual network, and the model results 
are shown in Figure 5. The network structure of the first two methods is similar to the 
single-signal model, with the difference being that the inputs to the model are different. In 
Figure 6(a), the input to the network is a time-frequency map mixing both vibrational and 
acoustic signal data. In contrast, in Figure 6(b), the input to the network is a stacked input 
of the two types of time-frequency map data, i.e., the color channels are stacked together, 
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allowing the third channel to be expanded from three to six. Unlike the mixed and stacked 
methods, the merged signal approach involves feeding the vibrational and acoustic signals 
into separate branches for model training. As shown in Figure 6(c), the depth-separable 
convolutional layer and the improved residual block extract the features of the two types of 
time-frequency maps, respectively, and merge the two networks after the GAP layer in order 
to train the remaining neurons and output the recognition results.
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The structural composition of IRBB1 and IRBB2 is shown in Figure 7. The two improved 
residual modules have the same main path. They are composed of DSC, bulk normalization, 
and Hardswish activation function modules, as well as a  Dropout layer, where the  
DSC and Hardswish activation functions are used to improve the computational efficiency 
and model performance. In contrast, the Dropout layer improves the network’s generalization 
performance. The difference between the modules is that IRBB1 contains two DSCs and 
connects the inputs to the outputs directly via jump connections, whereas IRBB2 contains 
three DSCs, and its jump connections have to go through one DSC before adding the outputs.

3. Experimentation and analysis

This section discusses the experimental results of mill load identification using vibration 
and acoustic signals. First, the experimental ball mill’s cylinder vibration and acoustic 
signals during the operation were collected and saved. The saved one-dimensional raw 
signal data were converted into two-dimensional time-frequency diagrams using CWT, 
and the results were compared for different load categories and signals. Second, different 
improved residual networks for single and multi-signal as well as classical classification 
neural network structures (VGG, CNN, GoogLeNet, AlexNet, and ResNet) are proposed to 
compare the accuracy of the proposed models. Finally, ablation experiments are conducted 
on the improved module of the proposed model, and the effectiveness of the recognition 
method is further measured by four metrics: accuracy, precision, recall, and F1 score.

3.1. Ball Mill Variable Load Experiment

In this paper, the experimental ball mill is selected as the experimental object, and CVR 
and MBVR are used as variables to carry out the variable-load multi-condition experiments. 
The M12 ball bearing is fixed under the ball mill barrel, and its contact with the outside 

Fig. 8. Experimental setup

Rys. 8. Konfiguracja eksperymentalna
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of the ball mill barrel for rolling friction to conduct the vibration signals generated by the 
impact parts of the bottom of the ball mill, and the linear vibration sensor is magnetically 
absorbed under the ball bearing to receive the vibration signals of the barrel, and the MA231 
sound sensor is arranged in a fixture at a  distance of 30–50 cm from the ball mill. The 
installation of the experimental ball mill and ball bearing is shown in the Figure 8. Grinding 
media selection of φ 30 mm, φ 40 mm, φ 50 mm, size of the steel ball, and the use of tungsten 

Table 1.	 Parameters of ball mill variable load experiment

Tabela 1.	 Parametry eksperymentu ze zmiennym obciążeniem młyna kulowego

CVR MBVR
Number of steel balls Material with proportion 1:2:3:4 (kg)

φ 30 mm φ 40 mm φ 50 mm +3–6 mm +6–9 mm +9–13 mm +13–18 mm

0.2

0.1 27 23 17 0.178 0.356 0.534 0.712 

0.3 19 16 12 0.369 0.737 1.106 1.475 

0.5 15 12 9 0.482 0.964 1.445 1.927 

0.7 12 10 8 0.571 1.143 1.714 2.285 

0.9 11 9 7 0.645 1.291 1.936 2.582 

1.1 10 8 6 0.711 1.421 2.132 2.842 

0.3

0.1 38 32 25 0.252 0.504 0.756 1.008 

0.3 26 22 17 0.512 1.024 1.536 2.048 

0.5 20 17 13 0.645 1.291 1.936 2.581 

0.7 16 13 10 0.726 1.453 2.179 2.905 

0.9 13 11 9 0.781 1.561 2.342 3.123 

0.4

0.1 51 43 33 0.336 0.672 1.008 1.344 

0.3 34 29 22 0.683 1.365 2.048 2.731 

0.5 26 22 17 0.860 1.721 2.581 3.442 

0.7 21 18 14 0.968 1.937 2.905 3.874 

0.9 18 15 11 1.041 2.082 3.123 4.164 

0.5

0.1 64 54 41 0.420 0.840 1.260 1.680 

0.3 43 36 28 0.853 1.707 2.560 3.414 

0.5 33 28 21 1.076 2.151 3.227 4.302 

0.7 26 22 17 1.211 2.421 3.632 4.842 

0.9 22 19 14 1.301 2.602 3.904 5.205 

1.1 19 16 12 1.366 2.733 4.099 5.466 



229Xiao and Cai 2025 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 41(1), 219–237

ore with a density of 2,500 kg/m3 as the experimental ore material, before the experiment 
will be fed into the particle size screening for four particle size classes: +3–6 mm, +6–9 mm, 
+9–13 mm, and +13–18 mm.

As shown in Table 1, the experiments were set up with CVR of 0.2, 0.3, 0.4, 0.5, and 
MBVR of 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1 in a total of 22 sets of experiments, which included 
nine working conditions with combinations of low, medium, and high CVR and low, 
medium, and high MBVR. Ball mill CVR in [0.3, 0.4] within the normal, less than 0.3 is 
too low, easy to empty smash, easy to damage the cylinder in the long run, more significant 
than 0.4 is too high, the impact of insufficient. MBVR in [0.5, 0.7] when regular, less than 
0.5 too low, too few steel balls, the ore is difficult to grind, greater than 0.7 is too high, too 
many steel balls will lead to the impact of the drop movement being too large, so that the 
material will reach a much smaller particle size than the target particle size. The impact 
on the ball mill body is greatest when the CVR is high and the MBVR is low. When the 
MBVR of 0.1 and 1.1 for the extreme conditions of extreme ball and material, respectively. 
Set the CVR of low for A1, normal for A2, too high for A3, the same MBVR of low in high 
set for B1, B2, B3, 9 kinds of conditions were A1B1, A1B2, ..., A3B2, A3B3.In each set of 
experiments, the cylinder vibration and acoustic signals were collected and saved using the 
instrument while the ball mill was in operation.

3.2. Time-frequency image generation

The raw vibration and acoustic signals acquired are converted into time-frequency 
images by CWT, and each two-dimensional map after conversion shows the results for 
one second, and the pixels are all 224*224. As shown in Figure 9, the vibration signal has 
continuous fluctuations at multiple frequencies from 0 to 10,000 Hz when the CVR is 50% 
and the MBVR is 0.9. In comparison, the acoustic signal only varies from 0 to 5,000 Hz, 
which is a more noticeable difference. However, not all the differences between all categories 
of time-frequency diagram features can be observed by the naked eye, for example, in the 
case of the three categories of vibration signals at different MBVR with a CVR of 50%  
the differences are not obvious on the image display. Therefore, we analyze the images 
using the feature extraction capability of the improved residual network and use these image 
data for subsequent model performance evaluation.

3.3. Identification results

Single-signal and multi-signal fusion methods are used to classify and recognize the 
features processed by DWT. To validate the performance of the proposed method, the models 
under single-signal and multi-signal fusion are trained using the mainstream networks VGG, 
CNN, GoogLeNet, AlexNet, and ResNet. The resulting accuracies are compared with the 
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results of the improved residual network, and the average recognition accuracy is chosen as 
the final metric term for evaluation to obtain the best results.

The results obtained by the different methods in the single-signal model training are 
shown in Figure 10. In the figure, VGG got poor results in two sets of experiments using 
vibration signal and acoustic signal datasets as training sets, CNN, GoogLeNet and AlexNet 
recognition accuracies reached more than 84%. In contrast, ResNet and the improved 
residual network of this paper reached more than 90% in both sets of experiments, with the 
improved network of this paper having better results. The results of the single-signal model 
training show that the improved residual network model can improve the accuracy of ball 
mill load recognition when trained on the experimental dataset.

In order to obtain higher load recognition accuracy, a combination of signal fusion and 
improved residual network structure (mixed, stacked, and merged methods) is considered 
and compared with the single signal approach, and the results obtained are shown in Table 2. 
In a single method, better results were obtained by improving the residual network. For fused 
signals, if two signals are fused while using the traditional ResNet network, the accuracy 
can be higher than the single signal using the stacked and merged methods. However, using 
the improved residual network, it can be found that it exhibits higher accuracy on both 
fusion methods, both showing better results than the single signal and the mixed signals 
only, with the merged ones showing the best results. A  comparison of the results shows 
that the proposed improved residual fusion network works better than other methods, with 

Fig. 10. Accuracy of single-signal model training 

Rys. 10. Dokładność treningu modelu pojedynczego sygnału
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an average recognition accuracy of up to 98.33%. In contrast, the best results of VGG, 
CNN, AlexNet, GoogLeNet, and ResNet are 85.34%, 90.74%, 92.46%, 91.79%, and 94.41%, 
respectively. It can be seen that the learned multi-source information feature vector using 
the improved residual fusion network retains the most compelling features, and the proposed 
method is useful for recognition performance.

3.4. Ablation experiments

In order to further explore the efficiency of the IRF-Net, six sets of ablation experiments 
are designed to analyze the effects of DSC, dropout, and Hardswish activation functions on 
the mill load identification results. The obtained experimental results are shown in Table 3, 
where “√” means this item is used and “×” means this item is not used.

Experiment 1 represents the conventional Resnet18 network, which has an accuracy of 
94.41% in recognizing mill loads. To verify the effectiveness of DSC, experiment 2 replaces 
the ordinary convolution in the original Resnet18 model with DSC, and the resulting accuracy 

Table 2.	 Accuracy results for different methods (%)

Tabela 2.	 Wyniki dokładności dla różnych metod (%)

VGG CNN AlexNet GoogLeNet ResNet Proposed

Single vibration 78.69 84.68 86.33 89.47 91.39 92.57

Single acoustic 72.81 85.12 84.26 88.72 90.18 90.89

Mixed 70.23 83.18 86.51 83.89 87.24 91.34

Stacked 83.57 90.25 89.81 82.47 92.46 95.18

Merged 85.34 90.74 92.46 91.79 94.41 98.33

Table 3.	 Results of ablation experiments

Tabela 3.	 Wyniki eksperymentów z ablacją

Model Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

DSC × √ × × × √

Dropout × × √ × √ √

Hardswish × × × √ √ √

accuracy/% 94.41 94.75 95.68 95.18 97.03 98.33

Duration of 
training round/s 28 19 31 33 34 26
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is 94.75%, an improvement of 0.34% over the unimproved model. While experiment 3 adds 
only the Dropout layer to the original model, the recognition accuracy can be increased to 
95.68%, and the model’s generalization ability is significantly improved. In investigating the 
contribution of the Hardswish activation function to the model, experiment 4 replaced all the 
ReLU activation functions of the original network with the Hardswish activation function, 
which resulted in an increase in the model identification accuracy of 0.77 percentage points 
because it produces a strong regularization effect and is continuously derivable everywhere. 
The above shows that improvements to all three components individually are beneficial 
in improving the recognition accuracy of the load. Therefore, experiment 5 considers 
the combination of Dropout and Hardswish activation functions, retaining the ordinary 
convolution, and the accuracy obtained from recognition is improved to 97.03%; finally, 
based on experiment 5, the introduction of depthwise separable convolution yields a  the 
recognition accuracy of 98.33% and the time taken for the training round is 26 s, which 
proves that the combination of DSC, Dropout, and Hardswish activation function is effective 
and reliable for improving the residual fusion network in improving the recognition of ball 
mill loads.

In order to observe more concretely the recognition effect of the merging method 
in this paper on each class of loads, the confusion diagrams obtained on the test set are 
shown in Figure 11. The states of six of these loads were accurately identified. A  small 

Fig. 11. Test set recall confusion matrix 

Rys. 11. Macierz pomyłek przywoływania zestawu testowego
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number of samples were incorrectly predicted, so in the final load identification results, the 
identification accuracy of this paper’s method did not reach 100%, which is consistent with 
the results in the table above. However, considering that this confusion matrix can only 
show the statistical results on the recall rate of each category, which may not be sufficient to 
evaluate the performance of the improved residual fusion network model, four metrics were 
used for the measurement, as shown in Table 4.

Table 4.	 Indicators related to the consolidated methodology

Tabela 4.	 Wskaźniki związane ze skonsolidowaną metodologią

A1B1 A1B2 A1B3 A2B1 A2B2 A2B3 A3B1 A3B2 A3B3 Average

Accuracy 100.00 94.06 100 96.51 94.39 100 100 100 100 98.33

Precision 099.21 93.65 100 97.22 95.01 100 100 100 100 98.34

Recall 100.00 94.07 100 96.51 94.39 100 100 100 100 98.33

F1-score 099.58 94.13 100 96.91 94.32 100 100 100 100 98.33

As can be seen from the relevant indicators of the merging method, the results of the 
four indicators are balanced in each category, and the average value of all of them reaches 
98.33%, which means that the residual fusion network can effectively identify each state of 
the ball mill load.

Conclusions

This study proposes an improved residual fusion network method for ball mill load 
identification under multiple signals. Firstly, the vibration signals and acoustic signals during 
the operation of ball mills with different CVR and MBVR are collected. The time-frequency 
diagrams of the raw signals are obtained by using CWT, and the model is trained using 
the IRF-Net based on multi-signal merging. The effectiveness of the method is verified by 
comparing it with the classical algorithm and the improved residual network with different 
signal input modes and combining it with ablation experiments. The experimental results 
show that the proposed method takes 26s for one round of training, and the recognition 
accuracy reaches 98.33%, which is better than other comparison networks, realizing 
the reduction of model recognition time and the improvement of recognition accuracy. 
Meanwhile, the average values of the proposed model in Precision, Recall, and F1-score 
metrics are 98.34%, 98.33%, and 98.33%, respectively, which verifies that the method of 
this paper has good robustness in ball mill load identification. Using time-frequency graphs 
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as network inputs, the model achieves automatic feature extraction in the time domain and 
frequency, obtaining higher recognition accuracy.
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Ball mill load identification method  

based on IRF-Net with multi-signal time-frequency images

K e y wo r d s

time-frequency image, residual networks, depthwise separable convolution, mill signals

A b s t r a c t

Accurately identifying the load status of the ball mill during the grinding process is conducive 
to improving the overall production efficiency and ensuring the safe operation of the entire grinding 
process. In this study, ball mill loads were classified into nine categories based on charge volume ratio 
(CVR) and material-to-ball volume ratio (MBVR). Different sensors are utilized to collect cylinder 
vibration and acoustic signals in the grinding process, respectively, and the raw data are converted 
into time-frequency images by continuous wavelet transform. In this paper, the ResNet18 model is 
improved from three aspects, namely, depthwise separable convolution (DSC), dropout layer, and 
Hardswish activation function, and an improved residual fusion network (IRF-Net) based on the 
merging of two time-frequency image signals is proposed for load recognition. In order to validate 
the performance of the proposed model, time-frequency images of the acquired data are analyzed, 
single and multiple signals are used as network inputs, respectively, compared with other classical 
models, and ablation experiments are performed on the different modules of the improvement. The 
results show that the improved residual fusion network achieves the best results in recognition with 
an accuracy of 98.33%, demonstrating good load recognition. The IRF-Net-based multi-signal  
time-frequency diagram identification method can be utilized to make a sound judgment on the load 
status of the mill.

https://doi.org/10.1109/ACCESS.2020.3041735
http://dx.doi.org/10.1109/ACCESS.2019.2907131
http://dx.doi.org/10.1016/j.ifacol.2021.12.002
http://dx.doi.org/10.1016/j.ifacol.2021.12.002
https://doi.org/10.13374/j.issn2095-9389.2022.03.06.001
https://doi.org/10.13374/j.issn2095-9389.2022.03.06.001
http://dx.doi.org/10.24425/gsm.2024.150823
https://doi.org/10.1016/j.measurement.2021.109749


237Xiao and Cai 2025 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 41(1), 219–237

Metoda identyfikacji obciążenia młyna kulowego  
oparta na sieci IRF-Net z wielosygnałowymi obrazami czasowo-częstotliwościowymi

S ł owa  k l u c z owe

obraz czasowo-częstotliwościowy, sieci rezydualne,  
splot separowalny głębokościowo, sygnały młyna

S t r e s z c z e n i e

Dokładne określenie stanu obciążenia młyna kulowego podczas procesu mielenia sprzyja po-
prawie ogólnej wydajności produkcji i zapewnia bezpieczną pracę całego procesu mielenia. W tym 
badaniu obciążenia młyna kulowego zostały sklasyfikowane do dziewięciu kategorii na podstawie 
stosunku objętości wsadu (CVR) i stosunku objętości materiału do kuli (MBVR). Różne czujniki są 
wykorzystywane do zbierania drgań cylindra i sygnałów akustycznych w procesie mielenia, odpo-
wiednio, a surowe dane są konwertowane na obrazy czasowo-częstotliwościowe za pomocą ciągłej 
transformacji falkowej. W tym artykule model ResNet18 został ulepszony pod trzema względami, 
a mianowicie: poprzez zastosowanie splotu separowalnego głębokościowo (DSC), warstwy dropout 
i  funkcji aktywacji Hardswisha, a ulepszona sieć fuzji resztkowej (IRF-Net) oparta na połączeniu 
dwóch sygnałów obrazu czasowo-częstotliwościowego jest proponowana do rozpoznawania obcią-
żenia. Aby zweryfikować wydajność proponowanego modelu, analizowane są obrazy czasowo-czę-
stotliwościowe pozyskanych danych, pojedyncze i  wielokrotne sygnały są używane jako wejścia 
sieciowe, odpowiednio, w porównaniu z innymi klasycznymi modelami, a eksperymenty ablacji są 
przeprowadzane na różnych modułach ulepszenia. Wyniki pokazują, że ulepszona sieć fuzji resztko-
wej osiąga najlepsze wyniki w rozpoznawaniu z dokładnością 98,33%, co świadczy o dobrym rozpo-
znawaniu obciążenia. Metodę identyfikacji wielosygnałowego diagramu czasowo-częstotliwościowe-
go opartą na IRF-Net można wykorzystać do rzetelnej oceny stanu obciążenia młyna.
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