
© 2025. The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution-ShareAlike International License (CC BY-SA 4.0, http://creativecommons.org/licenses/by-sa/4.0/), 
which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

gospodarka surowcami mineralnymi – mineral resources management

 Corresponding Author: Lirong Yang; e-mail: candy_yang_jx@163.com
1	Jiangxi Mining and Metallurgical Engineering Research Center; School of Mechanical and Electrical  
	 Engineering, jiangxi University of Science and TechnologyGanzhou, jiangxi Province, China;  
	 ORCID iD: 0000-0003-0259-8459; e-mail: candy_yang_jx@163.com
2	School of Mechanical and Electrical Engineering, jiangxi University of Science and TechnologyGanzhou,  
	 jiangxi Province, China; ORCID iD: 0009-0000-7732-6760; e-mail: 1556408795@qq.com
3	School of Mechanical and Electrical Engineering, jiangxi University of Science and TechnologyGanzhou,  
	 jiangxi Province, China; e-mail: 172035074@qq.com

2025      Volume 41      Issue 2      Pages 197–211

DOI: 10.24425/gsm.2025.154547

Lirong Yang1, Yang Liu2, Chong Cao3

Adaptive ore point cloud filtering algorithm based  
on the K-nearest neighbor

Introduction

In recent years, ore crushing technology has advanced toward intelligence (Cai et al. 
2021), employing technologies such as LiDAR, stereo vision, and ultrasound to sense the 
complex ore production environment and facilitate automated operations (Li et al. 2019, 
2023). In the roughing process of ore, in order to prevent the oversized raw ore from entering 
the rough crushing equipment, which leads to the jamming and damage of the equipment, 
it is necessary to set up a  grizzly screen on the raw ore silo to filter the oversized ore. 
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For large-size ore on the grizzly screen, manual crushing or robotic arm manipulation is 
commonly applied, posing high labor intensity and safety risks. This highlights the need for 
an intelligent robotic arm system that utilizes stereoscopic vision to autonomously locate 
and crush large ore on the grizzly screen (Weales 2018). In the research of stereo vision 
technology, due to the complexity of the factory environment, the actual acquisition of the 
original point cloud of the grizzly screen with ore generally has problems such as noise 
points and missing features. These problems will seriously affect the point cloud recognition 
and reconstruction accuracy, so it is necessary to study a filtering algorithm suitable for the 
noise characteristics of the ore point cloud data.

Some of the more commonly used filtering methods for complex surfaces like ores are 
mathematical form filtering (Pingel et al. 2013) and triangular mesh filtering (Axelsson 
2000). However, the literature (Chen et al. 2021) has tested and analyzed the above two 
filtering methods. The results show that the above methods are less effective for filtering 
in complex scenarios. The various parameter settings in the filter require the user to have 
a lot of on-site experience and technical reserves, so these two methods are not applicable 
to the crushing of ore on the grizzly screen. While in other filtering methods. Moreno and 
Li (2016) compared point cloud filtering methods in real-time video streaming and proved 
the effectiveness of different algorithms in processing Kinect sensor data. Chen et al. (2023) 
proposed a filtering method considering uniform point distribution, which can enhance the 
distribution of the point cloud while preserving the feature information. Han et al. (2017, 
2018) derived a linear model for the guided and filtered point cloud inspired by the guided 
image filtering method while analyzing the performance of various 3D point cloud filtering 
algorithms in detail in a review article. Wang and Jiang (Wang et al. 2022). The nonlocal 
position-based method proposed performs well in preserving geometric features. In addition, 
Lu et al. (2020) proposed a new deep-learning method for preserving geometric features 
that improve the automatic prediction of regular lines and can automatically estimate the 
point cloud normals. Zeybek and Şanlıoğlu (2019) investigated the filtering techniques for 
UAV point clouds. They demonstrated the effectiveness of the different methods in practical 
applications, but the evaluation criteria of the filtering results are relatively simple. Jia 
(Jia et al. 2019) provided a new idea for point cloud filtering with a classification method 
based on surface change factors. Zhang et al. (2016) proposed using a Cloth Simulation Filter 
(CSF) to filter the ground point cloud, but the effect is slightly insufficient on more complex 
surfaces.

Most of the above filtering methods are based on LiDAR. However, some mines are 
unable to configure high-precision LiDAR based on cost, and based on the improvement 
of optical sensor technology, the point cloud stereo reconstruction technology of binocular 
vision has become a new choice in recent years (Yang et al. 2024). Therefore, this paper 
analyzes the characteristics of the ore at the ore-crushing site and proposes an improved 
K-nearest-neighbor density filtering algorithm based on the point cloud captured by its 
binocular camera. Different from traditional ore point cloud processing algorithms, the 
algorithm proposed in this paper argues that regions of ore point clouds with significant 
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density variations contain more important information than regions of uniform density, and 
larger elimination weights should be given to noise points that are slightly farther away 
from the central ore point cloud. Therefore, in this paper, according to the average size of 
the domain density variation of the target points and the clustering coefficient, the optimal 
neighboring point cloud weight coefficients, filtering parameters, and cost functions are 
obtained through experiments. Finally, the domain density can be adjusted adaptively to 
output the optimal ore point cloud model.

1. Algorithm fundamentals

1.1. Description of the problem

As a key screening step before the realization of ore refining, the use of a grizzly screen 
intercepts and crushes the oversized ore, which can protect the jaw crusher under the grizzly 
screen from jamming and causing material accumulation. In contrast, human crushing and 
worker-operated robotic arm crushing exist in the problem of low crushing efficiency, high 
labor intensity, and safety hazards, based on which there is a need to design an unmanned 
intelligent ore position measurement device to identify the grizzly screen and to identify the 
ore position on the screen. In this paper, a binocular camera is used to collect ore images, 
and according to the left and right views to take stereo vision algorithm 3D reconstruction 
to generate the point cloud, the process schematic shown in Figure 1, after downsampling 

Fig. 1. 3D reconstruction of the ore on the grizzly screen 
(a) Binocular camera installation diagram, (b) Grizzly screen and ore captured by binocular camera, 

(c) Discrete noise in grizzly screen and ore point clouds

Rys. 1. Trójwymiarowa rekonstrukcja rudy na ekranie grizzly 
(a) Schemat instalacji kamery lornetkowej, (b) Ekran grizzly i ruda uchwycone przez kamerę lornetkową, 

(c) Dyskretny szum w chmurze punktów ekranu grizzly i rudy
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the original point cloud generated, the point cloud data of the grid sieve and the ore position 
and center of gravity calculation of the processing difficulties are mainly for the acquisition 
of point cloud data, which is usually accompanied by a large amount of noise and usually 
accompanied by a large amount of noise. These noises mainly come from irregular reflections 
on the ore surface, interference from ambient light, and equipment errors. These noise 
points will lead to blurring of the point cloud data, which seriously affects the subsequent 
point cloud identification and reconstruction. To address this difficulty, this paper proposes 
a K-nearest neighbor density filtering algorithm to filter and smooth the noisy points in the 
point cloud.

1.2. K-neighborhood density filtering algorithm 

The K-nearest neighbor density filtering algorithm consists of the following steps: first, 
input and read the point cloud data, then construct a KD-tree index structure to support 
neighbor searches. The K-nearest neighbor density algorithm calculates the local density 
and density variance of each point within the structure to retrieve local density information. 
Next, the K-means clustering algorithm is applied to categorize points by density values, 

Fig. 2. K-neighborhood density filtering flowchart

Rys. 2. Schemat blokowy filtrowania gęstości sąsiedztwa K
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highlighting regions with varying densities within the point cloud. Based on these density 
clustering results and density variance information, the optimal K-value is obtained, the 
Outlier Factor is calculated, and points are removed to complete the point cloud filtering 
process. The process flow is illustrated in Figure 2.

1.3. Topological relationship construction  
and neighborhood density calculation

The original point cloud of ore is a disordered point cloud, including the corresponding 
structure of ore and grid sieve, and contains a  large amount of outlier noise without any 
topological information between the points. Therefore, it is necessary to establish the 
topological relationship. In this study, a K-dimensional tree (K-D tree) is used to construct 
the topological relationship between the points in the point cloud. The main steps are as 
follows: Firstly, the root node is established, and the feature with the most significant 
variance value is selected as the segmentation feature according to the input point cloud 
data. Secondly, the corresponding median for the selected segmentation feature is calculated 
as the segmentation point to traverse all the data. Thirdly, during the traversal, points with 
features less than the median are divided into the left sub-node under the root node, while 
points with features greater than the median are divided into the right sub-node. Finally, 
this process is repeated for each child node until all the data are built on the leaf nodes, thus 
completing the establishment of the KD tree structure.

After the topological relationship is constructed, K neighborhood search method is 
used to construct point cloud information (Chae et al. 2017). Statistical point aggregation  
P = {p1, p2, ..., pn} consists of n points, and the collection is stored in KD tree for subsequent 
calls (Zeng et al. 2023). Traverse each sampling point pi in P, and then calculate the Euclidean 
distance dij from other points pi in P to pj. According to the size of dij, Select the k points 
closest to pi as the K-neighborhood point set Nk(pi) = {q1, q2, ..., qk} of the sampling point. 
qj represents the j TH point in the neighborhood of point pi, and setting dj(pi) represents the 
Euclidean distance between point pi and the j TH point in the neighborhood, as shown in 
Equation (1).

	 ( ) ( ) ( ) ( ) ( )2 2 2
, i jj i i ji j i jd x x y y zp d p zq − += −= − +

� (1)

Wherein, the three-dimensional coordinates of pi are xi, yi, zi, and the three-dimensional 
coordinates of qj are xj, yj, zj. The K-neighborhood density ρ(pi) of point pi is introduced. 
The density of the neighborhood of this point is represented by the inverse of the average 
distance of the K-neighborhood. The larger the density, the denser the point cloud of the 
neighborhood of this point. On the contrary, the sparser the point cloud. The schematic 
diagram of neighborhood density is shown in Figure 3.
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The K-neighborhood density ρ(Pi) of the point pi is introduced, the density (local point 
concentration) of the neighborhood of the point is expressed by the inverse of the average 
distance of the K-neighborhood, the larger the density is, the denser the neighborhood point 
cloud of the point is, and vice versa, the sparser the point cloud is, the algorithm is shown 
in the schematic in Figure 3, and the formula for the neighborhood density is shown in 
Equation (2).

	
( ) , ( )i j i j iP p p p N p= − ∈∑

� (2)

1.4. K-value adaptive selection

One of the difficulties of the K-neighborhood filtering method is determining the optimal 
value of K. A smaller K value will be too sensitive to noise, resulting in a decrease in the 
original point retention rate. In comparison, a larger K value will blur the local structure. 
Here, a method based on the neighborhood point cloud density variance is introduced to 
select a  suitable K value. First, the point cloud is divided into two clusters, namely the 
noise cluster and the retention cluster, by manually setting the point cloud density center 
point according to the point cloud density through the K-means clustering algorithm.  

Fig. 3. Schematic of K-neighborhood density

Rys. 3. Schemat gęstości dzielnicy K
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The appropriate K value should contain a small number of points from another cluster within 
the neighborhood range of the critical point of a certain cluster so as to separate the critical 
point from the non-critical point. Under this condition, the K value should be as small as 
possible to reduce the calculation pressure. In order to determine whether the K neighborhood 
of the target point contains points from other clusters, the K neighborhood point density 
variance σ(pi) is introduced, and the calculation formula is shown in Equation (3).

	
( )2

1

1( ) ( ) ( )
k

i j i
j

p q p
k =

σ = ρ −ρ∑
� (3)

The larger the variance of the K neighborhood density, the more uneven the density 
distribution in the neighborhood of the point is, indicating that the probability of noise in the 
neighborhood of the point is greater. For the target point cloud computing K neighborhood 
density variance distribution map, the maximum value of the neighborhood density variance 
in the map is set as the reference value Kσ, and then the average density μρ of each cluster is 
calculated according to Equation (4).

	

1
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| |

C

i
i
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Cρ
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Where C is the density cluster point set after clustering. Finally, the adaptive K value Ki 
corresponding to each point is calculated according to the above parameters. The calculation 
formula is shown in Equation (5).

	
( )i

i pK Kρµ
σρ

 = α ⋅ +β 
 

� (5)

In the Equation, α and β are linear weights, and finally Ki is rounded down to get the 
optimal K value for each local point.

After selecting a suitable K value, a method is needed to detect outliers, i.e. noise, and 
remove them from the point set to complete the filtering operation. Here, the local outlier 
factor LOFk(pi) needs to be extracted by calculating the difference in density between the 
target point and its neighborhood points. The calculation method expresses the local outlier 
factor as the ratio of the average density of the neighborhood of the target point to the density 
of the point. The calculation formula is shown in Equation (6).
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Set the filtering threshold according to the closeness of the actual point cloud R. When 
the local outlier factor LOFk(pi) is greater than R, it means that the density of the target 
point is less than the average density of the neighboring points in its neighborhood, and 
the point is likely to be in the noise cluster. On the contrary, when the local outlier factor 
is less than R, it means that the density of the target point is greater than the average 
density of the neighboring points in its neighborhood, and the point is likely to be in 
the retained cluster. The outlier factor is removed to complete the filtering of the point  
cloud.

2. Experiments and results analysis

Experiments were conducted on a Windows 10 64-bit system with an Intel Core i5-12400 
processor at 2.4 GHz and 16 GB of memory. The algorithm will be implemented by Visual 
Studio 2019 with C++ programming language and PyCharm 3.2 with Python programming 
language. The point cloud model is generated from the irregular ore and the point cloud 
model generated by the scanning of the grid sieve at the mining site captured by the ZED2 
camera.

2.1. Outlier visualization experiments

Local outlier visualization experiments are carried out on the noisy point cloud data to 
support the advantages of a local outlier in representing the degree of outlier and obtaining 
the adaptive optimal K-value. The number of points in the ore point cloud is 18,809, and the 
three-dimensional dimensions are: X = 628.83 mm, Y = 901.48 mm, and Z = 196.65 mm. 
The maximum offset distance between the noisy point cloud and the standard point cloud 
is 48.12 mm. The average offset distance is 16.039 mm, and the standard deviation of the 
average offset distance is 8.019 mm. Calculate the value of K according to the algorithm. 
Then, the outlier factor of each point is identified and its value is visualized using the local 
outlier factor algorithm. The result is shown in Figure 4. In the figure, the size of the red 
circle indicates the size of the outlier, and the larger the red circle, the more likely the point 
is to be an outlier.

The visualized image reveals a significant difference in outlier factors between sparsely 
and densely distributed point sets. The algorithm proposed in this chapter will adaptively 
adjust the parameters and accurately identify the outlier points to be rejected to achieve the 
filtering result through this difference.



205Yang et al. 2025 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 41(2), 197–211

Fi
g.

 4
. O

re
 p

oi
nt

 c
lo

ud
 a

nd
 v

is
ua

liz
at

io
n 

of
 o

ut
lie

r f
ac

to
rs

 
(a

) o
re

 p
oi

nt
s c

lo
ud

 in
 th

e 
pr

es
en

ce
 w

ith
 n

oi
se

, (
b)

 to
p 

vi
ew

 o
f v

is
ua

liz
ed

 o
ut

lie
r f

ac
to

rs
,  

(c
) m

ai
n 

vi
ew

 o
f v

is
ua

liz
ed

 o
ut

lie
r f

ac
to

rs
, (

d)
 si

de
 v

ie
w

 o
f v

is
ua

liz
ed

 o
ut

lie
r f

ac
to

rs

Ry
s. 

4.
 C

hm
ur

a 
pu

nk
tó

w
 ru

dy
 i 

w
iz

ua
liz

ac
ja

 c
zy

nn
ik

ów
 o

ds
ta

ją
cy

ch
 

(a
) c

hm
ur

a 
pu

nk
tó

w
 ru

dy
 w

 o
be

cn
oś

ci
 sz

um
u,

 (b
) w

id
ok

 z
 g

ór
y 

w
iz

ua
liz

ow
an

yc
h 

cz
yn

ni
kó

w
 o

ds
ta

ją
cy

ch
,  

(c
) w

id
ok

 g
łó

w
ny

 w
iz

ua
liz

ow
an

yc
h 

cz
yn

ni
kó

w
 o

ds
ta

ją
cy

ch
, (

d)
 w

id
ok

 z
 b

ok
u 

w
iz

ua
liz

ow
an

yc
h 

cz
yn

ni
kó

w
 o

ds
ta

ją
cy

ch



206 Yang et al. 2025 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 41(2), 197–211

2.2. Comparison experiment on denoising effect 

Set the filter threshold R to 1 and filter the point cloud. In order to verify the effectiveness 
of the denoising algorithm, the adaptive K-value density filtering algorithm proposed in this 
paper is compared with the radius filtering algorithm and the statistical filtering algorithm. 
The same noisy point cloud is filtered by all three denoising algorithms; the experimental 
results are shown in Figure 5.

Figures 5(b) through (d) display the denoising results for the noisy point cloud using 
radius filtering, statistical filtering, and K-neighborhood density filtering, respectively. 
The  results indicate that the edges of the point cloud denoised by Radius filtering and 
Statistical filtering are still not clear enough, and there are scattered outliers around the main 
body, leading to structural disorder. At the same time the edges of the point cloud denoised 
by K-neighborhood density filtering are more transparent and smoother, with fewer outliers. 
In order to quantitatively and objectively assess the denoising effect, three indicators are 
used as evaluation criteria for denoising performance, namely denoising precision Pr, noise 
recall rate REcall, and origin retention rate REtain. The formulas of the three indicators are 
shown in Equation (7).

	

Re

Re

r
TPP

TP FP

TPcall
TP FN

TNtain
TN FP

 = + 
  = 

+ 
 

= 
+  

� (7)

ªª TP	 –	 represents the number of points that are correctly detected as noise points, 
FP	 –	 represents the number of points that are actually non-noise points but are  

			   incorrectly detected as noise points, 
FN	 –	 represents the number of points that are actually noise points but are not  

			   detected, 
TN	 –	 represents the number of points that are actually non-noise points and are correctly  

			   detected as non-noise points. 

As the important indexes of denoising effect, Pr and REcall indicate the effect on 
detection and elimination of outlying noisy points by the algorithm. The higher the value 
of Pr and REcall, the better the denoising effect. The other indicator REtain indicate the 
effect on retaining the non-noise points. The higher the value of REtain, the more structural 
features can be preserved without being destroyed. Comparison of the performance of 
three algorithms is shown in Table 1 Comprehensive performance comparison of different 
denoising algorithms Table 1.
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As indicated in Table 1, the original retention rates of the radius filtering and statistical 
filtering algorithms are relatively high, yet their denoising accuracies are poor. Additionally, 
the noise recall rate of the radius filtering algorithm merely amounts to 47.36%, signifying 
that a considerable number of actual noise points remain unremoved. Despite the fact that 
the recall rate of the statistical filtering algorithm reaches as high as 99.91%, its denoising 
accuracy is relatively low, standing at 68.18%, suggesting that there exists a  significant 
error during the denoising process. Both these algorithms are influenced by their fixed 
neighborhood radius and reliance on global statistics, along with the presence of numerous 
outliers in the ore point cloud, which affects the overall mean and standard deviation, thereby 
resulting in the deletion of a large number of dense points. In contrast, the K-neighborhood 
density filtering algorithm proposed in this paper exhibits outstanding performance in all 
three indicators, with a denoising accuracy of 95.68%, a noise recall rate of 99.92%, and an 
original retention rate of 94.17%, indicating that this algorithm possesses high precision and 
reliability in denoising ore point clouds.

Conclusions

To address structural noise removal and smoothing in ore point clouds collected via 
stereo vision, perceptual weights were designed based on neighborhood density and density 
variance. The traditional point cloud neighborhood filtering algorithm is improved, and the 
point cloud adaptive K-neighborhood density filtering algorithm is proposed.

Comparative experiments show that the K-neighborhood density filtering algorithm 
provides significant improvement in terms of precision and noise recall compared with 
traditional statistical and radius filtering. The filtering performance of the proposed 
algorithm better matches the ore point cloud model and supports subsequent tasks such as 
ore crushing and point cloud processing, demonstrating the practical applicability in the 
field of ore crushing.

This work was supported by the General Projects of R&D Program of Ganzhou (No. 202101124911).

The Authors have no conflict of interest to declare.

Table 1.	 Comprehensive performance comparison of different denoising algorithms

Tabela 1.	 Kompleksowe porównanie wydajności różnych algorytmów odszumiania

Algorithm Points numbers Pr (%) REcall (%) REtain (%)

Radius filter 18,809 40.62 47.36 92,37

Statistical filter 18,809 68.18 99.91 91.89

K-neighborhood density filtering 18,809 95.68 99.92 94.17
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Adaptive Ore Point Cloud Filtering Algorithm Based on the K-Nearest Neighbor

K e y w o r d s

stereo vision, ore point cloud, filtering, K nearest neighbors

A b s t r a c t

A robotic arm can determine the crushing center of ore using point clouds reconstructed by 
a  binocular camera. However, noise in the original point cloud creates ambiguity, complicating 
the determination process. To address this, an efficient noise filtering and smoothing algorithm for 
point clouds is proposed. First, the topological relationships among the point clouds are established 
using a K-D tree, enabling neighborhood selection and query for each point. The density and density 
variance for each neighborhood are then calculated via the K-nearest neighbor density filtering 
method. Clustering is applied to determine the average density, and the optimal K value is adaptively 
obtained based on both the density variance and cluster densities with assigned weights. The local 
outlier factor is subsequently calculated using this K value, and noise points are filtered out by setting 
an outlier factor threshold. Based on the enhanced K-nearest neighbor density filtering algorithm, 
the experimental results demonstrate that this method achieves a  denoising precision of 95.68%, 
representing an improvement of 55.06% over the traditional Radius filtering method and 27.5% over 
the statistical filtering method. Additionally, the noise recall rate reaches 99.92%, and the original 
retention rate is 94.17%, showcasing superior filtering performance while preserving data integrity. 
These advancements provide a reliable technical foundation for subsequent ore crushing and point 
cloud data processing tasks.

 
Adaptacyjny algorytm filtrowania chmury punktów 

rudy oparty na najbliższych sąsiadach K

S ł o w a  k l u c z o w e

widzenie stereoskopowe, chmura punktów rudy, filtrowanie, K najbliższych sąsiadów

S t r e s z c z e n i e

Manipulator może określić środek kruszenia rudy za pomocą chmur punktów rekonstruowanych 
przez kamerę binokularną. Jednak szumy w oryginalnej chmurze punktów powodują niejednoznacz-
ność, co komplikuje proces określania środka kruszenia. Aby temu zaradzić, zaproponowano wydajny 
algorytm filtrowania i wygładzania szumów w chmurach punktów. Najpierw za pomocą drzewa K-D 
ustalane są relacje topologiczne między punktami chmury, co umożliwia wybór i zapytania dotyczą-
ce sąsiedztwa każdego punktu. Następnie dla każdego sąsiedztwa obliczana jest gęstość i wariancja 
gęstości za pomocą metody filtrowania gęstości najbliższych sąsiadów K. Zastosowano klasteryzację 
w celu określenia średniej gęstości, a optymalna wartość K jest adaptacyjnie uzyskiwana na podsta-
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wie zarówno wariancji gęstości, jak i gęstości klastrów z przypisanymi wagami. Następnie obliczany 
jest lokalny współczynnik odstępstwa przy użyciu tej wartości K, a punkty szumów są odfiltrowywa-
ne poprzez ustawienie progu współczynnika odstępstwa. Na podstawie udoskonalonego algorytmu 
filtrowania gęstości najbliższych sąsiadów K wyniki eksperymentów wykazują, że metoda ta osiąga 
precyzję odszumiania na poziomie 95,68%, co stanowi poprawę o 55,06% w porównaniu z tradycyj-
ną metodą filtrowania promienia oraz o 27,5% w porównaniu z metodą filtrowania statystycznego. 
Ponadto wskaźnik odzyskiwania szumów osiąga 99,92%, a wskaźnik zachowania oryginalnych da-
nych wynosi 94,17%, co pokazuje doskonałą wydajność filtrowania przy jednoczesnym zachowaniu 
integralności danych. Te osiągnięcia stanowią niezawodną podstawę techniczną do dalszych zadań 
związanych z kruszeniem rudy oraz przetwarzaniem danych chmury punktów.
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