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Introduction

Mineral resources serve as the material foundation for national economic development. 
With the continuous advancement of science and technology, the mining industry is 
gradually evolving toward intelligence, automation, and informatization, making the digital 
transformation of traditional mining an irreversible trend (Shao et al. 2024). Consequently, 
the demand for image recognition technologies in key processes such as ore particle size 
detection and mineral identification is steadily increasing. In ore processing, accurate 
identification of ore particle size not only optimizes the crushing and screening processes 
but also reduces equipment wear and energy consumption (Tian et al. 2021).
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In recent years, image processing techniques based on deep learning have achieved 
remarkable results in industrial inspection, particularly convolutional neural networks (CNNs), 
which have demonstrated outstanding performance in object detection tasks (Xiaoyan et al. 
2022). Currently, mainstream object detection algorithms can be categorized into three types: 
two-stage algorithms, one-stage algorithms, and Transformer-based DETR models (Zhu et al. 
2024). Two-stage methods, such as R-CNN (Usha et al. 2022) and Mask R-CNN (Shunling 
et al. 2022), offer high detection accuracy but often make predictions only on high-level 
feature maps, resulting in a high miss rate for small ore particles. Transformer-based DETR 
models (Li et al. 2024) introduce global attention mechanisms to enhance end-to-end detection 
capabilities but exhibit limited adaptability in domains with small sample sizes and complex 
backgrounds, such as those in image datasets. One-stage methods, such as YOLO (Longzhen 
et al. 2022) and SSD (Yuhuan et al. 2023), maintain relatively high accuracy while achieving 
faster detection speeds. However, while SSD improves small-object detection through multi-
scale feature maps, its default box design lacks robustness for covering irregularly shaped 
ore particles. The YOLO series strikes a better balance between speed and accuracy, but still 
requires multiple module enhancements to effectively address feature interference caused by 
stacked ores. Overall, the YOLO family remains the most widely used object detection solution 
due to its excellent performance and strong engineering foundation.

As one of the latest models in the YOLO series, YOLOv9 incorporates dynamic pyramid 
convolution (DPConv) and a task-decoupled architecture, resulting in further improvements 
in both detection accuracy and inference speed (Chien et al. 2024). These innovations offer 
a new and promising approach for detecting fine ore particles that are stacked.

For the detection of stacked fine-grained ores (such as tungsten ores with particle sizes 
ranging from 6 mm to 50 mm), existing object detection algorithms still face challenges in 
terms of accuracy. To improve the detection accuracy of fine-grained stacked ores in mineral 
images, this paper proposes a novel architecture called SPDM-YOLO. The proposed method 
has been trained and evaluated on a bespoke dataset of ores. The findings demonstrate that 
the proposed method in this paper enhances the detection of fine ores in images compared 
to currently available state-of-the-art methods. The principal contributions of this paper are 
as follows:

1.	 We introduced a novel convolutional neural network (CNN) building block called 
SPD-Conv to replace the conventional stepwise convolution and pooling layers 
commonly used in traditional CNNs. The design of a  space-to-depth layer and 
a non-step-length convolutional layer addresses the challenges associated with low-
resolution images and small object detection.

2.	 We introduced a  lightweight attention module (MLCA) to improve the extraction 
of channel and spatial information. This module is capable of effectively combining 
local and overall features, thereby ensuring the preservation of important feature 
regions of small objects and enhancing the expressive power of the network.

We proposed a new bounding box regression loss function named Inner-FocalerIoU to 
replace the traditional CIoU loss function. By assisting the bounding box to accelerate the 
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training convergence as well as focusing on the complex samples by using linear interval 
mapping, the problem of tiny objects with different sensitivities to position and scale 
deviations is solved to enhance the detection performance.

1. The basic architecture of YOLOv9

1.1. Input

The input layer of the YOLOv9 model accepts fixed-size images, typically in RGB 
format with three channels. It is also subject to normalization, which aims to enhance the 
comparability of images under varying lighting conditions and scales, thereby contributing 
to the stability and accuracy of subsequent feature extraction. This stage is designed so that 
the model can handle images of different sizes while maintaining efficient computational 
performance.

1.2. Backbone

YOLOv9 uses CSPDarknet as its backbone network. CSPDarknet is a highly optimized 
deep convolutional neural network comprising multiple convolutional and pooling layers 
(Pan et al. 2024). The network performs deep learning through a series of residual blocks, 
each of which contains multiple convolutional layers inside. Through this hierarchical 
convolution and pooling operation, the network can efficiently extract detailed information 
and high-level features from the image, capturing different scales and shapes of the target 
object. Meanwhile, the backbone network introduces a new lightweight network structure, 
GELAN, which combines the advantages of CSPDarknet’s enriched gradient, reduced 
redundancy, and lower computation and the strengths of ELAN’s highly efficient feature 
aggregation to extract the image features better and lay an accurate foundation for the 
subsequent detection.

1.3. Neck and head

In YOLOv9, the Neck section is mainly responsible for connecting the backbone network 
to the detection head. This part utilizes a  feature pyramid network (FPN) structure to 
enhance the model’s detection capability through multi-scale feature fusion. It also utilizes 
CSP (Cross Stage Partial) convolutional blocks for channel segmentation and feature map 
connection, enabling the efficient integration of features from different layers. This design 
enables the network to acquire feature information from multiple layers, which significantly 
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improves the accuracy and robustness of target detection. The Head part of YOLOv9 adopts 
a decoupled head design, which transforms the regression task into a classification task in 
the bounding box branch. A  multi-scale prediction strategy is applied; this strategy can 
perform target detection at different scales to improve the adaptability and detection ability 
of the model.

1.4. Auxiliary section

The additions to YOLOv9 relative to previous versions are used to improve training 
reliability. It contains a main branch responsible for the final target detection output, an auxiliary 
reversible branch to solve the problem of information loss due to the depth of the network, 
multiple levels of auxiliary information to solve the problem of error accumulation in deep 
supervision, and the computation of the auxiliary head will fuse multiple feature maps.

2. Improved YOLOv9 model

To improve the accuracy and robustness of ore detection, this chapter proposes an enhanced 
YOLOv9-based algorithm, named SPDM-YOLOv9. Considering the characteristics of 
stacked fine ore particles, such as dense distribution, irregular shapes and frequent occlusion, 
the algorithm incorporates space-to-depth convolution (SPD-Conv). This helps preserve  
fine-grained spatial details while increasing the feature depth. Meanwhile, the hybrid local 
channel attention module (MLCA) is introduced to strengthen the model’s focus on subtle and 
locally relevant features, which is crucial for distinguishing between overlapping or adhesive 
ores. Additionally, to further tailor the model to the ore detection task, an Inner-FocalerIoU 
loss function is proposed, combining the advantages of Inner-IoU and Focaler-IoU to improve 
localization accuracy in complex scenes. Compared with traditional object detection tasks, 
ore images present unique challenges, and these targeted improvements address the specific 
demands of this domain. The SPDM-YOLOv9 model is shown in Figure 1.

2.1. SPD-Conv module

In traditional convolutional neural network (CNN) architectures, stepwise convolution 
and pooling layers gradually reduce the spatial resolution of feature maps as the network 
deepens. This often results in the loss of fine-grained details, particularly for small objects, 
thereby reducing detection accuracy. To address this, the SPD-Conv module is introduced 
to replace standard convolution and pooling layers, helping preserve spatial information and 
enhance detection accuracy for such complex targets. The schematic diagram of SPD-Conv 
is shown in Figure 2.
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SPD-Conv (Yang et al. 2023) consists of a Space-to-depth (SPD) layer and a non-step-
length convolutional layer. The SPD layer transforms spatial information into the depth 
dimension, increasing the feature map depth without losing important details. Following 
this, a  non-step-length convolutional layer is applied, which performs feature extraction 
without reducing the spatial size of the feature map. This design helps retain fine-grained 
details, which are crucial for detecting small and dense targets. The specific steps are as 
follows.

1.	 Feature map slicing: downsampling using a scale factor to divide an scale2  subfeature 
map from the central feature map (X) of size S · S · C1.

2.	 Sub-feature map concatenation: these sub-feature maps are spliced along the channel  
 
dimension, resulting in a new feature map of size 2 1S S scale C

scale scale
⋅ ⋅  (X1). That 

is, the spatial dimension of the new feature map is the original 1 ,
scale

 and the channel 

dimension is increased by a factor of scale2, which maintains all the information in 
the original feature map and reduces its spatial resolution.

3.	 Non-step-length convolution: a convolution layer with a step size of 1 is applied to the 
new feature map formed, and a filter is used to extract important features and reduce 
the dimensionality of the channels, resulting in an output feature map of size 

2S S C
scale scale

⋅ ⋅ (X2).

2.2. MLCA module

The attention mechanism can filter out key information in the target task from a large 
amount of data, thereby overcoming the limitations of traditional models in long-distance 
dependent processing. In this study, the MLCA attention mechanism is introduced for the 
stacked ore target recognition task, which enables the model to focus on analyzing the region 
where the stacked ore is located.

MLCA (Mixed Local Channel Attention) (Cheng et al. 2022) is a lightweight attention 
module designed to enhance both local and global feature representation. When integrated 
into the backbone network, it enables the model to effectively differentiate channel-wise 
priorities at multiple levels, thereby capturing more detailed and comprehensive features 
and improving its ability to process fine-grained information. MLCA schematic diagram as 
shown in Figure 3.

Traditional attention mechanisms such as SE (Squeeze and Excitation) and ECA (Efficient 
Channel Attention), which both compress the entire channel feature map into a single value, 
ignore the spatial information within each channel. While spatial feature information is crucial 
for constructing spatial attention maps and contains only feature channel information, most of 
the traditional attention mechanisms may result in the loss of important feature information. 
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MLCA incorporates spatial information, unlike these traditional channel attention mechanisms. 
It integrates channel information, spatial information, local channel information, and global 
channel information into a  single piece. It improves model representability without adding 
undue computational complexity. The specific steps are as follows.

1.	 Division of the input feature map: the MLCA input feature map is divided into small 
blocks to capture local information through adaptive pooling, ensuring that spatial 
features within each block are considered and preventing the loss of important spatial 
information.

2.	 Local information branch: this branch contains local spatial information and applies 
a  local SE attention mechanism to each parcel, preserving important local spatial 
features within each patch. The original resolution of the two vectors is then recovered 
by one-dimensional convolution as well as inverse pooling. The convolution kernel 
size k is proportional to the channel dimension C with the following formula:

	
( ) ( )2log

odd

C bk C= Φ = +
γ γ

� (1)

ªª γ and b	 –	 hyperparameters with default value of 2, 
odd 		  –	 means k is odd, and add 1 if k is even.

3.	 Global information branch: this branch obtains global information through 
convolution and reshaping, considering the entire feature map to capture global 
dependencies and interactions between different regions of the image.

4.	 Combination of local and global attention: the two parts of the information are fused 
after acquiring the information through the above two branches to achieve the goal of 
hybrid attention and enhance the model’s representational ability.
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2.3. Inner-FocalerIoU loss function

The IoU (Intersection over Union) loss function is widely used in computer vision 
tasks, particularly for evaluating regression performance and accelerating convergence 
during bounding box prediction. In YOLOv9, the bounding box regression adopts the 
CIoU (Complete IoU) loss function. However, the ore images in this study contain particles 
with irregular shapes, including small and densely stacked ores, which often lead to a high 
degree of bounding box overlap. In such scenarios, CIoU may fail to accurately measure 
the overlap, resulting in suboptimal regression performance for small, overlapping  
objects.

In order to improve the accuracy of the overlap calculation of the bounding box, the  
Inner-FocalerIoU loss function replaces the CIoU. Inner-FocalerIoU combines the advantages 
of Inner-IoU and Focaler-IoU. Inner-IoU (Zhang et al. 2023) is a  proposed method that 
utilizes IoU to calculate loss by incorporating auxiliary boundaries. The size of the auxiliary 
boundary can be controlled by the scale factor ratio to calculate the loss to speed up the 
convergence. Its calculation expression is as follows.

	
,

2 2

gt gt
gt gt gt gt

c r cl
w ratio w ratiob x b x⋅ ⋅

= − = +
� (2)

	
,

2 2

gt gt
gt gtgt gt
t c cb

h ratio h ratiob y b y⋅ ⋅
= − = +

� (3)

	
,

2 2l c r c
w ratio w ratiob x b x⋅ ⋅

= − = +
� (4)

	 ,
2 2t c b c

h ratio h ratiob y b y⋅ ⋅
= − = +

� (5)

	 ( ) ( )( ) ( ) ( )( )min , max , min , max ,gt gt gtgt
r l b t tl binter b b b b b b b bτ= − ⋅ − � (6)

	 ( ) ( )2 2( ) ( )gt gtunion w h ratio w h ratio inter= ⋅ ⋅ + ⋅ ⋅ − � (7)

	 inner interIoU
union

= � (8)

Focaler-IoU (Jia et al. 2022) employs a linear interval mapping approach to reconstruct the 
IoU loss, enhancing bounding box edge regression. This method enables the model to focus 
on different regression samples across various detection tasks, thereby improving detection 
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performance, particularly on challenging or hard-to-localize targets. Its computational 
expression is shown below.

	 0  

 

1  

if IoU d
IoU dFocaler IoU if d IoU u

u d
if IoU u

<
 −− = 

−
>

 

� (9)

where [d,u] ∈ [0,1] can adjust the values of d and u thus prompting Focaler-IoU to focus 
on different regression samples. Integrating Inner-IoU into Focaler-IoU edge loss not only 
ensures higher recognition accuracy for small ore particle targets and more tolerance for 
large ore particle targets when calculating overlap, but also effectively accelerates the 
process of edge regression. The Inner-FocalerIoU-based border regression loss function 
is as follows.

	
 1Focaler IoUL Focaler IoU− = − − � (10)

	
 

inner
Inner FocalerIoU Focaler IoUL L IoU IoU− −= + − � (11)

3. Model training and experimentation

3.1. Model training environment platform

We chose PyTorch as the platform for developing the YOLOv9 network due to its 
outstanding flexibility, intuitive debugging features, and efficient migration of data 
parameters between CPU and GPU. The hardware and software parameters in Table 1 are 
applied for both model training and experimental conditions.

We trained and validated the model using the network training parameters specified in 
Table 2. The training and experimental platform was developed in Visual Studio Code to 
enable effective runtime execution.

3.2. Improvement of modelling effects

Due to the absence of publicly available datasets tailored to ore detection tasks, this study 
constructs a custom dataset comprising ore images collected under laboratory conditions 
that simulate a  mining environment. To reflect the complexity of real-world scenarios, 
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ores of varying particle sizes (ranging from 6 mm to 50 mm) were randomly scattered and  
stacked in a controlled environment, simulating practical production conditions such as 
adhesion, overlap, and irregular morphology. A  total of 300 ore images were captured, 
and Mosaic (Li  et  al. 2023) data augmentation was applied to expand the dataset and 
improve generalization. While this controlled setup allows for targeted analysis of stacked 
and scattered ores, it is acknowledged that the simplified laboratory environment cannot 
fully replicate the complexity of actual mining operations, such as variable lighting, 
dust interference, and continuous ore flow. However, the experimental design provides 

Table 1. 	 Hardware and software system parameters

Tabela 1. 	 Parametry systemu sprzętowego i programowego

Hardware Name Parameter Configuration

Graphics Card NVIDIA GeForce RTX 4060

CPU Gen Intel Core i5-12490F

Computer System Windows 10

Anaconda 23.1.0

CUDA 12.4 

CUDNN 8.4.1

Python 3.8.19

Pytorch 2.2.0

Opencv-python 4.9.0.80

Torchvision 0.17.0

Table 2. 	N etwork training parameters

Tabela 2. 	 Parametry treningu sieci

Parameter Name Parameter Configuration

lr0 0.01

epochs 300

patience 0

batch 8

workers 0

optimizer auto
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a  foundational step for model validation under partially controlled conditions, offering 
valuable insights for future field deployments.

In this paper, the improved SPDM-YOLO network adopts the SPD-Conv module instead 
of the traditional convolutional pooling layer, adds the MLCA intentional force mechanism 
module, and replaces the CIoU loss function in the bounding box with the Inner-FocalerIoU 
loss function. This will enable the model to learn the semantic information of different layers, 
thereby improving its perceptual ability, reducing redundant information in the feature map, 
and enhancing computational efficiency. It also enables the model to focus more on ore 
targets with small particles, thereby improving recognition accuracy. The recognition effect 
is shown in Figure 4.

3.3. Analysis of the experimental results

To validate the effectiveness of the improved model (SPDM-YOLO), the model 
was evaluated from both qualitative and quantitative perspectives. From a  qualitative 
evaluation perspective, the detection differences between the SPDM-YOLO model and 
other models were compared to assess model performance. The evaluation indexes 
selected for comparative analysis included accuracy (P), detection precision (PR), 
and mean average precision (mAP). From a  quantitative evaluation perspective, the 
detection differences before and after model improvement were compared to assess 
the model’s performance, consistent with the selection of evaluation indexes in the 

(a)  Original image (b)  Ore recognition image

Fig. 4. Identification diagram of the model

Rys. 4. Diagram identyfikacyjny modelu
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qualitative evaluation perspective. Additionally, ablation experiments were conducted 
for comparative analysis.

(1) Qualitative evaluation
Accuracy P is the proportion of samples that actually belong to the positive class 

among those judged as a positive class by the model. Generally speaking, the higher the 
accuracy rate, the more accurate the model is in predicting the positive class and the better 
its performance is. The PR curve can be used to describe the comprehensive performance 
of the model, which calculates the P value and R value under different thresholds by setting 
different confidence thresholds. The expression is as follows: 

	 TPP
TP Fn

=
+

� (12)

	 TPR
TP FP

=
+

� (13)

ªª TN		 –	 the number of correctly identified non-ore,
FP		 –	 the number of non-ore incorrectly identified as ore, 
FN		 –	 the number of ores incorrectly identified as non-ore. 
The larger the PR curve and the area enclosed by the x and y axes of the model, the higher 

the detection accuracy and completeness rate will be indicated. 

AP (average precision) is the calculation of the average accuracy of the model for a single 
category. A numerical form of the assessment metric AP can be obtained by calculating the 
average of the precision values corresponding to each recall value based on the PR curve. 
According to the standard, the AP calculation can be defined as the area of the interpolated 
PR curve enveloped with the x-axis. This approach is known as AUC (area under the  
curve). Its calculation formula is: 

	
( ) ( )

1

1 1
1

n

i i interp i
i

AP r r p r
−

+ +
=

= −∑
� (14)

ªª ri	 –	 the recall value corresponding to the first interpolation at the first interpolation  
			   of the precision interpolation segment in ascending order.

The mAP is the AP calculated for all categories and then averaged. Its can be used to 
weigh the goodness of the detection ability of the trained model on all categories. Assuming 
that there are m categories and m > 1, then the formula for mAP is:
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1

m

i
i

AP
mAP

m
==
∑

� (15)

ªª there is only one category, i.e. m = 1, the value of mAP should be equal to the value of AP. 

The study carries out comparative experiments on a homemade stacked ore dataset to 
test the P, PR and mAP metrics of the three models, YOLOv9, YOLOv10 and SPDM-YOLO, 
which are trained on the ore dataset. The experimental results are presented in Table 3. 

From the comparison experiment results in Table 3, it was found that the improved model 
increased accuracy by 3.09%, detection accuracy by 2.41%, and mean average accuracy by 
2.18% compared to the original YOLOv9 model. The improved model improved the accuracy 
by 0.52%, detection accuracy by 0.63%, and average precision mean by 0.75% compared to 
the YOLOv10 model. The comparison curves of the models are shown in Figure 5.

Fig. 5. Model comparison curves

Rys. 5. Krzywe porównania modeli
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Table 3. 	 Results of model comparison

Tabela 3. 	 Wyniki porównania modeli

Model type P/% PR/% mAP/%

YOLOv9 91.37 96.56 96.64

YOLOv10 93.94 98.34 98.07

SPDM-YOLO 94.46 98.97 98.82

From Figure 5, it can be seen that the improved model achieves stability faster in terms of 
Precision, Recall, and mAP compared to the pre-improvement curves, resulting in improved 
performance. The newly released YOLOv10 model is also introduced for comparison. 

Fig. 6. Comparison of loss functions

Rys. 6. Porównanie funkcji strat
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However, the improved model does not exhibit significant performance improvement 
compared to YOLOv10 in these three aspects, but the performance on the loss function has 
been improved to a certain extent. The variable values of the loss function of the improved 
model trained on the homemade ore dataset are shown in Figure 6.

Figure 6 loss function in the loss function by comparing the YOLOv9 YOLOv10 original 
model in the early iteration, the loss value briefly appeared to rise in the state, may be 
at the beginning of the iteration of the model’s weight is random initialization, may be in 
a not very good state; with the increase in the number of iterations, the model adapts to 
the learning of the sample, the loss value shows a downward trend, iteration 270 times or 
so tends to converge. The overall loss value of the improved model is significantly lower 
than that of the other two models, and the oscillation amplitude of the loss value during the 
decrease is smaller compared to the other two. This further indicates that the training effect  
is ideal.

(2) Quantitative evaluation
The ablation experiments are conducted to verify the effect of the improved model 

by gradually introducing the SPD-Conv module, the MLCA attention mechanism, and  
the Inner-FocalerIoU loss function, based on the original YOLOv9 model. The results of the 
ablation experiments are shown in Table 4, where “+’’ indicates that this item is adopted and 
“–’’ indicates that this item is not adopted.

Table 4.	 Results of ablation experiments

Tabela 4.	 Wyniki eksperymentów ablacji

SPD-ConV MLCA Inner-FocalerIoU P/% PR/% mAP/%

– – – 91.37 96.56 96.64

+ – – 92.28 97.20 97.52

+ – – 93.54 98.15 98.44

+ + + 94.46 98.97 98.82

From the results of the ablation experiments in Table 4, it is found that the introduction 
of the SPD-Conv module improves the accuracy by 0.91%, the detection precision by 0.64%, 
and the average precision mean by 0.88%. The simultaneous introduction of the SPD-Conv 
module and MLCA attention mechanism resulted in a 2.17% increase in accuracy, a 1.59% 
increase in detection precision, and a 1.80% increase in the mean average precision. After 
the simultaneous introduction of the SPD-Conv module, the MLCA attention mechanism, 
and the Inner-FocalerIoU loss function, the accuracy is improved by 3.09%, the detection 
precision is improved by 2.41%, and the average precision mean is improved by 2.18%. 
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Conclusions. Advantages and contributions

1.	 The backbone part of the YOLOv9 network structure is enhanced by introducing the 
SPD-Conv building block, replacing the original convolution and pooling layers. This 
modification transforms the spatial dimension information of the input image into the 
depth dimension, thereby enhancing the depth of the feature map while preserving 
crucial details. It also enables feature extraction without reducing the resolution, 
thereby preserving fine-grained information of small and stacked ore particles.

2.	 Introducing the MLCA attention mechanism to help the model effectively differentiate 
between local and global priorities on the feature maps of different channels so as to 
obtain more detailed and comprehensive feature information and improve the model’s 
micro-detail processing capability.

3.	 The introduction of the Inner-FocalerIoU loss function pays more attention to the 
calculation of the overlap degree of ore small targets and stacked ores, as well as 
accelerates the edge regression process to improve the accuracy of ore recognition 
further.

4.	 The mean values of stacked ore recognition accuracy, detection accuracy, and average 
accuracy of the improved SPDM-YOLO model are 94.46%, 98.97%, and 98.82%, 
which improve the model performance compared to the pre-improvement model, and 
the recognition effect is better.

Although the proposed SPDM-YOLOv9 demonstrates improved performance in 
detecting dense and overlapping ore particles, several limitations remain. 

1.	 The current experimental setup is based on a  simplified laboratory environment, 
which may not fully reflect the complexities of real mining production. The dataset 
used, although enhanced through Mosaic data augmentation, is relatively small. 
These limitations may affect the generalizability of the model in real-world scenarios.

2.	 While the improved model outperforms both YOLOv9 and YOLOv10, the 
performance gains are relatively modest when compared to the latest YOLOv10 
architecture. Experimental results indicate that although the proposed modifications 
are effective, there is still room for further enhancement.

In future work, we plan to expand the dataset with real on-site ore images, explore 
domain adaptation techniques to improve generalization and investigate the integration of 
other lightweight modules or attention mechanisms to improve performance in complex 
environments further.
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Stacked fine ore detection method based on SPDM-YOLO network

K e y w o r d s

MLCA, YOLOv9, ore detection, loss function

A b s t r a c t

To address the issue of low accuracy in detecting stacked fine ore particles using existing target 
detection algorithms, which subsequently affect the crusher’s ore crushing and screening process, 
a new ore detection method based on the SPDM-YOLO deep learning network is proposed. The study 
focuses on detecting stacked fine tungsten ore particles ranging in size from 6 mm to 50 mm. The initial 
step involves incorporating SPD-Conv into YOLOv9, whereby it replaces the conventional CNN’s 
step-length convolutional layer and pooling layer. This is done to reduce the loss of ore target detail 
information. Secondly, a lightweight hybrid local channel attention module (MLCA) is integrated into 
the backbone to improve focus on target features and enhance the model’s ability to process intricate 
details. Finally, the Inner-FocalerIoU loss function is proposed by combining the advantages of Inner-
IoU and Focaler-IoU. Replacing the original CIoU loss function with it as the edge loss function of 
the algorithm not only improves the accuracy of calculating the overlap of the bounding box but 
also effectively speeds up the edge regression process. The Mosaic data enhancement method was 
employed to augment the dataset for experimental purposes. The findings indicate that the enhanced 
YOLOv9 network model improves the accuracy (P) by 3.09%, the detection precision (PR) by 2.41%, 
and the mean average precision (mAP) by 2.18% compared to the original model. This substantiates 
the assertion that the augmented algorithm is more efficacious in recognition.

 
 

Metoda wykrywania ułożonych drobnych rud oparta na sieci SPDM-YOLO

S ł o w a  k l u c z o w e

MLCA, YOLOv9, wykrywanie rudy, funkcja strat

S t r e s z c z e n i e

Aby rozwiązać problem niskiej dokładności wykrywania ułożonych drobnych cząstek rudy 
za pomocą istniejących algorytmów wykrywania celu, co następnie wpływa na proces kruszenia 
i przesiewania rudy kruszarki, zaproponowano nową metodę wykrywania rudy opartą na głębokiej 
sieci uczenia SPDM-YOLO. Badanie koncentruje się na wykrywaniu ułożonych drobnych cząstek 
rudy wolframu o rozmiarze od 6 mm do 50 mm. Początkowy krok obejmuje włączenie SPD-Conv 
do YOLOv9, dzięki czemu zastępuje on konwencjonalną warstwę splotową CNN o długości kroku 
i  warstwę pulowania. Ma to na celu zmniejszenie utraty szczegółowych informacji o  docelowej  
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rudzie. Ponadto lekki hybrydowy moduł uwagi lokalnego kanału (MLCA) jest zintegrowany 
z  kręgosłupem, aby poprawić koncentrację na cechach docelowych i  zwiększyć zdolność modelu 
do przetwarzania skomplikowanych szczegółów. Na koniec zaproponowano funkcję strat Inner- 
-FocalerIoU, łącząc zalety Inner-IoU i  Focaler-IoU. Zastąpienie oryginalnej funkcji strat CIoU 
nią jako funkcją strat krawędzi algorytmu nie tylko poprawia dokładność obliczeń nakładania się 
pola ograniczającego, lecz także skutecznie przyspiesza proces regresji krawędzi. Do rozszerzenia 
zestawu danych do celów eksperymentalnych zastosowano metodę wzbogacania danych Mosaic. 
Wyniki wskazują, że ulepszony model sieci YOLOv9 zwiększa dokładność (P) o 3,09%, precyzję 
wykrywania (PR) o 2,41% i średnią precyzję (mAP) o 2,18% w porównaniu z oryginalnym modelem. 
Potwierdza to twierdzenie, że rozszerzony algorytm jest skuteczniejszy w rozpoznawaniu.
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