ORIGINAL PAPER
Chemical characteristics of dust from cement kilns
 
More details
Hide details
1
AGH University of Science and Technology
 
 
Submission date: 2019-05-20
 
 
Final revision date: -0001-11-30
 
 
Acceptance date: 2019-06-28
 
 
Publication date: 2019-06-28
 
 
Corresponding author
Alicja Uliasz-Bocheńczyk   

AGH University of Science and Technology
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2019;35(2):87-102
 
KEYWORDS
TOPICS
ABSTRACT
The cement production process is associated with the emission of dust. These are mainly CKD (cement kiln dust) and BPD (by-pass dust), classified as wastes from group 10 – Wastes from thermal processes, subgroups 10 and 13 – wastes from manufacture of cement, lime and plaster and articles and products made from them. Cement kiln dust is a waste of variable composition and properties, which makes it a difficult material to recover. The main directions of recovery presented in the world literature indicate the use of dust from cement kilns in cement, mortar and concrete production, the production of bricks and in order to improve soil quality and wastewater treatment. Factors affecting chemical and phase compositions of dust from cement kilns are the reason why each waste should be analyzed individually. The paper presents the results of the analysis of the cement kiln dust after dedusting cement kilns and two bypass dusts. Analysis of the chemical composition has shown significant concentrations of chlorine, potassium and calcium in all wastes. The content of: Si, S, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Pb, and Bi has also been confirmed. The analyzed dusts were characterized by the presence of carbonates (calcite, dolomite, and arcanite), quartz, alite, belite, sylvine, anhydrite, and portlandite in their phase composition. The leachates which were characterized by an alkaline reaction. In terms of leachability, high concentrations of chlorine ions in the analyzed dust leachates were confirmed, which significantly limits their use.
METADATA IN OTHER LANGUAGES:
Polish
Charakterystyka chemiczna pyłów z instalacji pieców cementowych
pyły z instalacji pieców cementowych, skład chemiczny, skład fazowy, wymywalność zanieczyszczeń
Proces produkcji cementu związany jest z emisją pyłów. Są to przede wszystkim pyły z instalacji pieców cementowych (CKD i BDP) klasyfikowane w grupie 10 – Odpady z procesów termicznych, podgrupy 10 13 – Odpady z produkcji spoiw mineralnych (w tym cementu, wapna i tynku) oraz z wytworzonych z nich wyrobów. Pyły z pieców cementowych są odpadem o zróżnicowanym składzie i właściwościach, co powoduje, że są materiałem trudnym do odzysku. Badania przedstawione w literaturze światowej jako główne kierunki odzysku wskazują wykorzystanie pyłów z instalacji pieców cementowych w procesie produkcji cementu, zapraw, betonów; do poprawy jakości gleb i oczyszczania ścieków. Czynniki wpływające na składy chemiczne i fazowe pyłów z instalacji pieców cementowych powodują, że każdy odpad należy analizować indywidualnie. W artykule przedstawiono wyniki badań pyłu z odpylania z instalacji pieca cementowego oraz 2 pyłów z bypassów. Analiza składu chemicznego wykazała znaczącą zawartość: Cl, K, Ca we wszystkich odpadach. Stwierdzono również obecność: Si, S, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Pb, Bi. Analizowane pyły charakteryzowały się obecnością w składzie fazowym: węglanów (kalcytu, dolomitu, arkanitu), kwarcu, alitu, belitu, sylwinu, anhydrytu i portlandytu. W zakresie wymywalności stwierdzono wysokie stężenia jonów chloru w odciekach z analizowanych pyłów, co znacząco ogranicza możliwości ich wykorzystania.
 
REFERENCES (38)
1.
Ahmari, S. and Zhang, L. 2013. Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Construction and Building Materials 40, pp. 1002–1011.
 
2.
Ahmed et al. 2018 − Ahmed, S.A., Metwally, M.-E.A. and Zakey, S.E. 2018. Utilizing industrial waste-water as alkali activator in sand-cement kiln dust bricks. Construction and Building Materials 182, pp. 284–289.
 
3.
Al-Homidy et al. 2017 − Al-Homidy A.A., Dahim, M.H. and Abd El Aal, A.K. 2017. Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust. Journal of Rock Mechanics and Geotechnical Engineering 9(4), pp. 749−760.
 
4.
Ali et al. 2011 − Ali, O.I.M., Osmana, H.H., Sayeda, S.A., Shalabic, M.E.H. 2011. The removal of some rare earth elements from their aqueous solutions on by-pass cement dust (BCD). Journal of Hazardous Materials 195, pp. 62– 67.
 
5.
Best... 2013. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide. European Commission Joint Research Centre Institute for prospective technological studies. Luxembourg: Publications Office of the European Union, 506 pp.
 
6.
Bondar, D. and Coakley, E. 2014. Use of gypsum and CKD to enhance early age strength of High Volume Fly Ash (HVFA) pastes. Construction and Building Materials 71, pp. 93–108.
 
7.
Bulletin of The Polish Cement Association 2010–2017. Polish Cement Association. [Online] http://www.polskicement.pl/emi... [Accessed: 2018-09-15] (in Polish).
 
8.
Chaunsali, P. and Peethamparan, S. 2013. Influence of the composition of cement kiln dust on its interaction with fly ash and slag. Cement and Concrete Research 54, pp. 106–113.
 
9.
Duchesne, J. and Reardon, E.J. 1998. Determining controls on element concentrations in cement kiln dust. Journal of Waste Management 18(5), pp. 339–350.
 
10.
Duszak et al. 2015 − Duszak, B., Adamski, G., Foszcz, T., Laska-Józefczak, P. 2015. Tests for contents of hard and harmful compounds in in the process of cement production in dust from rotary furnaces (Badania zawartości pierwiastków i związków szkodliwych w procesie produkcji cementu w pyłach z pieców obrotowych). Scientific Works of Institute of Ceramics and Building Materials 22, pp. 9–22 (in Polish).
 
11.
El-Attar et al. 2017 − El-Attar, M.M., Sadek, D.M. and Salah, A.M. 2017. Recycling of high volumes of cement kiln dust in bricks industry. Journal of Cleaner Production 143, pp. 506–515.
 
12.
Emisje. Polish Cement Association. [Online] http://www.polskicement.pl/emi... [Accessed: 2018-09-15].
 
13.
Graur, Z. and Gawlicki, M. 2016. The effect of alternative fuels on the operation of Portland cement clinker kiln installation and the properties of common cements (Wpływ stałych paliw alternatywnych na pracę instalacji piecowej wytwarzającej klinkier portlandzki i na właściwości cementów powszechnego użytku). Materiały Ceramiczne/Ceramic Materials 68(2), pp. 120–124 (in Polish).
 
14.
Heikal et al. 2002 − Heikal, M., Aiad, I. and Helmy, I.M. 2002. Portland cement clinker, granulated slag and by-pass cement dust composites. Cement and Concrete Resarch 32(11), pp. 1805–1812.
 
15.
Jøns et al. 2008 − Jøns, E., Hundebøl, S. and Clausen, K. 2008. New reasons forinstalling a chloride by-pass. Interaction between chlorideand sulphur [In:] 2008 IEEE Cement Industry Technical Conference Record, Miami, pp. 195–209.
 
16.
Kunal et al. 2012 − Kunal, Siddique, R. and Rajor, A. 2012. Use of cement kiln dust in cement concrete and its leachate characteristics. Resources, Conservation and Recycling 61, pp. 59–68.
 
17.
Lanzerstorfer, Ch. 2016. Residue from the chloride bypass de-dusting of cement kilns: Reduction of the chloride content byair classification for improved utilization. Process Safety and Environmental Protection 104, pp. 444–450.
 
18.
Limbachiya et al. 2015 − Limbachiya, V., Ganjian, E. and Claisse, P. 2015. The impact of variation in chemical and physical properties of PFA and BPD semi-dry cement paste on strength properties. Construction and Building Materials 96, pp. 248–255.
 
19.
Mackie et al. 2010 − Mackie, A.L., Boilard, S., Walsh, M.E. and Lake, C.B. 2010. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. Journal of Hazardous Materials 173, pp. 283–291.
 
20.
Mackie, A.L. and Walsh, M.E., 2015. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water. Water Research 85, pp. 443–450.
 
21.
Maslehuddin et al. 2008 − Maslehuddin, M., Al-Amoudi, O.S.B., Shameem, M., Rehman, M.K. and Ibrahim, M. 2008. Usage of cement kiln dust in cement products – Research review and preliminary investigations. Construction and Building Materials 22, pp. 2369–2375.
 
22.
Miller, G.A. and Azad, S. 2000. Influence of soil type on stabilization with cement kiln dust. Construction and Building Materials 14(2), pp. 89−97.
 
23.
Moon et al. 2010 − Moon, D.H., Lee, J.R., Grubb, D.G. and Park, J.H. 2010. An assessment of Portland cement, cement kiln dust and Class C fly ash for the immobilization of Zn in contaminated soils. Environ Earth Sciences 61, pp. 1745–1750.
 
24.
Najim et al. 2014 − Najim, K.B., Mahmod, Z.S. and Atea, A-K.M. 2014. Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar. Construction and Building Materials 55, pp. 5−12.
 
25.
Nicholls et al. 2007 − Nicholl, J.C., Reid, J.M., Whiteoak, C.D. and Wayman, M. 2007. Cement kiln dust (CKD) as a filler in asphalt. TRL Report TRL 659. [Online] https://trl.co.uk/sites/defaul... [Accessed: 2018-09-15].
 
26.
Osmanovic, Z., Haračić, N. and Zelić, J. 2018. Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cement and Concrete Composites 91, pp. 189–197.
 
27.
Rimal et al. 2019 − Rimal S., Poudel, R.K. and Gautam, D. 2019. Experimental study on properties of natural soils treated with cement kiln dust. Case Studies in Construction Materials 10, e00223.
 
28.
Sadek et al. 2017 − Sadek, D.M., El-Attar, M.M. and Ali, A.M. 2017. Physico-mechanical and durability characteristics of concrete paving blocks incorporating cement kiln dust. Construction and Building Materials 157, pp. 300–312.
 
29.
Salahudeen et al. 2014 − Salahudeen, A.B., Eberemu, A.O. and Osinubi, K.J. 2014. Assessment of Cement Kiln Dust-Treated Expansive Soil for the Construction of Flexible Pavements. Geotechnical and Geological Engineering 32, pp. 923–931.
 
30.
Salem et al. 2015 − Salem, W.M., Sayed, W.F., Halawy, S.A. and Elamary, R.B. 2015. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in waste water treatment. Ecotoxicology and Environmental Safety 119, pp. 155–161.
 
31.
Salem, A. and Velayi, E. 2012. Application of hydroxyapatite and cement kiln dust mixture in adsorption of lead ions from aqueous solution. Journal of Industrial and Engineering Chemistry 18, pp. 1216–1222.
 
32.
Schorcht et al. 2013 − Schorcht, F., Kourti, I., Scalet, B.M., Roudier, S. and Sancho, L.D. 2013. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide. European Commission Joint Research CentreInstitute for prospective technological studies. Luxembourg: Publications Office of the European Union, 506 pp.
 
33.
Siddique, R., 2008. Cement Kiln Dust [In:] Waste Materials and By-Products in Concrete, pp. 351–380.
 
34.
Sreekrishnavilasam et al. 2006 − Sreekrishnavilasam, A., King, S. and Santagata, M. 2006. Characterization of fresh and landfilled cement kiln dust for reuse in construction applications. Engineering Geology 85(1–2), pp. 165−173.
 
35.
Sreekrishnavilasam et al. 2007 − Sreekrishnavilasam, A., Rahardja, S., Kmetz, R. and Santagata, M. 2007. Soil treatment using fresh and landfilled cement kiln dust. Construction and Building Materials 21, pp. 318–327.
 
36.
Sultan et al. 2018 − Sultan, M.E., Abo-El-Enein, S.A., Sayed, A.Z., EL -Sokkary, T.M. and Hammad, H.A. 2018. Incorporation of cement bypass flue dust in fly ash and blast furnace slag-based geopolymer. Case Studies in Construction Materials 8, pp. 315−322.
 
37.
Ubbriaco, P. and Calabrese, D. 2000. Hydration behavior of mixtures of cement and fly ash mixtures with high sulphate and chloride content. Journal of Thermal Analysis and Calorimetry 61, pp. 615–623.
 
38.
Whiteley et al. 2015 − Whiteley, B., Sheen, T. and Marsland, T. 2015. Cement Kiln Dust and By-Pass Dust from Cement Kilns. April 2015, Amec Foster Wheeler Environment & Infrastructure UK Limited. [Online] randd. defra.gov.uk/Document.aspx?Document=14051_36656FinalReport15150i3.pdf [Accessed: 2018-09-15].
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top