ORIGINAL PAPER
Value Chains in the Raw Materials Industry – the Example of the Cobalt Value Chain
 
More details
Hide details
1
AGH University of Krakow
 
 
Submission date: 2024-01-26
 
 
Final revision date: 2024-02-16
 
 
Acceptance date: 2024-02-27
 
 
Publication date: 2024-03-26
 
 
Corresponding author
Sylwia Lorenc   

AGH University of Krakow
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(1):5-24
 
KEYWORDS
TOPICS
ABSTRACT
The global development of electromobility and the innovation of life are becoming increasingly noticeable. A direct implication of this is the increase in demand for modern products and services, their components and thus the raw materials necessary to produce them (e.g. cobalt, lithium, rare earth metals). In the European Union (EU), raw materials related to strategic sectors – renewable energy, electric mobility, defense and aerospace and digital technologies – show a very strong dependence on import throughout the entire value chain. In the case of eleven out of thirty of the so-called critical raw materials (CRM), necessary for the energy transition, the EU’s dependence on import exceeds 85%. Global supply chains, which had already been strained, were further affected by the COVID-19 pandemic and the exacerbated geopolitical situations leading to even greater shortages of critical raw materials in Europe and leaving the industry facing challenges in securing access to resources. An implication of this was the European Parliament’s position on critical raw material legislation in September 2023, which called on the EU to increase its processing capacity across the value chain and enable the production of at least 40% of the annual consumption of strategic raw materials by 2030. Growing importance in the transition to a low-emission economy is attributed to cobalt (Co), which is an essential component both in the production of electric vehicles (EV), stationary energy storage and in the developing sectors of wind energy, fuel cell systems and hydrogen storage technologies, robotics, unmanned vehicles (drones) and 3D printing as well as in digital technologies. Securing the supply of such raw material is crucial for the European Union’s economic resilience, technological advantage and strategic autonomy. The purpose of this article is to present and analyze the concept of value chains as strategic models of long-term development and ensuring efficiency from a sustainable perspective. According to the authors, a detailed analysis of value chains may enable defining strategic directions of action and identifying the risks of their disruption or interruption. To give a practical dimension to the presented analyses, the example of the cobalt value chain is provided and the determinants of its functioning on the current market along with development prospects are indicated.
METADATA IN OTHER LANGUAGES:
Polish
Łańcuchy wartości w przemyśle surowcowym – przykład cobalt value chain
metale krytyczne, przemysł surowcowy, łańcuchy wartości, łańcuch wartości kobaltu, migracje marż
Globalny rozwój elektromobilności oraz innowacyjności życia stają się obecnie coraz bardziej widoczne. Bezpośrednią implikacją takiego stanu rzeczy jest wzrost popytu na nowoczesne produkty i usługi, ich komponenty i tym samym na surowce niezbędne do ich wytworzenia (np. kobalt, lit, metale ziem rzadkich). Raw materials w Unii Europejskiej (EU) związane z sektorami strategicznymi: energia odnawialna, mobilność elektryczna, przemysł obronny i lotniczy, czy też technologie cyfrowe, wykazują bardzo silne uzależnienie od importu w całym łańcuchu wartości. W przypadku 11 z 30 tzw. surowców krytycznych (CRM), niezbędnych do przeprowadzenia transformacji energetycznej, zależność UE od importu przekracza już teraz 85 procent. Globalne łańcuchy dostaw, które już wcześniej były napięte, ucierpiały jeszcze bardziej w wyniku pandemii COVID-19 oraz zaognionych sytuacji geopolitycznych, co doprowadziło do jeszcze większych niedoborów krytycznych surowców w Europie i sprawiło, że branża stoi przed wyzwaniami związanymi z zabezpieczeniem dostępu do zasobów. Implikacją tego faktu było przyjęcie we wrześniu 2023 r. przez Parlament Europejski stanowiska w sprawie prawodawstwa dotyczącego surowców krytycznych, w którym wezwał UE do zwiększenia swoich mocy przerobowych w całym łańcuchu wartości i umożliwienia wytworzenia co najmniej 40% rocznego zużycia surowców strategicznych do 2030 roku. Rosnące znaczenie w procesie przechodzenia na gospodarkę niskoemisyjną przypisuje się kobaltowi (Co), który jest niezbędnym komponentem zarówno przy produkcji pojazdów elektrycznych (EV), stacjonarnych magazynów energii, czy też w rozwijających się sektorach: energii wiatrowej, systemach ogniw paliwowych i technologii magazynowania wodoru, robotyki, pojazdów bezzałogowych (dronów), druku 3D, jak również technologii cyfrowych. Zabezpieczenie dostaw tego surowca ma kluczowe znaczenie dla odporności gospodarczej Unii Europejskiej, jej przewagi technologicznej i strategicznej autonomii. Celem artykułu jest przedstawienie i analiza koncepcji łańcuchów wartości jako strategicznych modeli rozwoju długoterminowego i zapewnienia efektywności w zrównoważonym ujęciu. Według autorów, szczegółowa analiza łańcuchów wartości może pozwolić na określenie strategicznych kierunków działania i zidentyfikowanie ryzyk ich zaburzenia czy przerwania. Dla praktycznego wymiaru zaprezentowanych analiz przytoczono łańcuch wartości na przykładzie kobaltu oraz wskazano determinanty jego funkcjonowania na obecnym rynku wraz z perspektywami rozwoju.
 
REFERENCES (41)
1.
Berretta, A. and Harvey, R. 2022, Mining for a low carbon economy new technologies and integrated governance. Routledge Handbook of the Extractive Industries and Sustainable Development, pp. 172–190.
 
2.
BGR 2017. Cobalt from the DR Congo – Potential, Risks and Significance for the Global Cobalt Market. [Online] https://www.deutsche-rohstoffa... [Accessed: 2023-11-02].
 
3.
Boba et al. 2019 – Bobba, S., Mathieux, F. and Blengini, G.A. 2019. How will second-use of batteries affect stocks and flows in the EU? A model for traction Li-ion batteries. Resources, Conservation and Recycling 145, pp. 279–291, DOI: 10.1016/j.resconrec.2019.02.022.
 
4.
Brilloni et al. 2022 – Brilloni, A., Poli, F., Spina, G.E., Giorgetti, M. and Soavi, F. 2022. Easy recovery of Li-ion cathode powders by the use of water-processable binders. Electrochimica Acta 418(7), DOI: 10.1016/j.electacta.2022.140376.
 
5.
Castro et al. 2022 – Castro, J., Hidalgo, D. and Gómez, M. 2022. Technologies for recycling lithium-ion batteries from electric vehicles. Advances in Environmental Research 91, pp. 165–194, DOI: 10.52305/BGNT6712.
 
6.
Cobalt Institute 2023. Cobalt Market Report. [Online] https://www.cobaltinstitute.or... [Accessed: 2023-11-02].
 
7.
Danino-Perraud et al. 2021 – Danino-Perraud, R., Legleuher, M. and Guyonnet, D. 2021. Assessment of European demand for mineral resources by material flow analyses: The case of cobalt. Mineral Resources Economy 1, pp. 1–33, DOI: 10.1002/9781119850861.ch1.
 
8.
Deetman et al. 2018 – Deetman, S., Pauliuk S., Van Vuuren, D.P., Van der Voet, E. and Tukker, A. 2018 – Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances. Environmental Science & Technology 52, pp. 4950–4959. DOI: 10.1021/acs.est.7b05549.
 
9.
da Silva Lima et al. 2023 – da Silva Lima, L., Cocquyt, L., Mancini, L., Cadena, E. and Dewulf, J. 2023. The role of raw materials to achieve the Sustainable Development Goals: Tracing the risks and positive contributions of cobalt along the lithium-ion battery supply chain. Journal of Industrial Ecology 27(3), pp. 777–794.
 
10.
European Commision 2023. Proposal for a regulation of the European Parliament and of the council establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. [Online] https://eur-lex.europa.eu/lega... [Accessed: 2023-11-02].
 
11.
European Commision 2024. Critical raw materials. [Online] https://single-market-economy.... [Accessed: 2024-12-13].
 
12.
Com 2022. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability [Online] https://eur-lex.europa.eu/lega... [Accessed: 2023-10-30].
 
13.
Gauß et al. 2023 – Gauß, R. and Gellermann, C. and Maurer, A. 2023, Raw Material Demands for the Green Transition: Risks, Opportunities, and Required Actions to Meet the 2030 Climate Targets. Archimedes 65, pp. 125–145, DOI: 10.1007/978-3-031-25577-9_7.
 
14.
Grohol, M. and Veeh C. 2023. Study on the Critical Raw Materials for the EU. Final Report. Publications Office of the European Union: Luxembourg.
 
15.
Habib, K. and Wenzel, H. 2014, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production 84, pp. 348–359, DOI: 10.1016/j.jclepro.2014.04.035.
 
16.
Helbig et al. 2018 – Helbig C., Bradshaw, A.M., Wietschel, L., Thorenz, A. and Tuma, A. 2018. Supply risks associated with lithium-ion battery materials. Journal of Cleaner Production 172, pp. 274–286, DOI: 10.1016/j.jclepro.2017.10.122.
 
17.
Henckens et al. 2018 – Henckens, M.L.C.M., Driessen, P.P.J. and Worrell, E. 2018. Molybdenum resources: Their depletion and safeguarding for future generations. Resources, Conservation and Recycling 134, pp. 61–69, DOI: 10.1016/j.resconrec.2018.03.002.
 
18.
Howard, M. and Gifford, S. 2023, Faraday Insights – Issue 7 Update: January 2023. Building a Responsible Cobalt Supply Chain. [Online] https://www.faraday.ac.uk/wp-c... [Accessed: 2023-10-30].
 
19.
IEA 2022. The Role of Critical Minerals in Clean Energy Transitions. World Energy Outlook Special Report 2022. [Online] https://iea.blob.core.windows.... [Accessed: 2023-10-19].
 
20.
Jones et al. 2023 – Jones, B., Nguyen-Tien, V. and Elliott, R.J.R. 2023. The electric vehicle revolution: Critical material supply chains, trade and development. World Economy 46(1), pp. 2–26, DOI: 10.1111/twec.13345.
 
21.
Kallitsis et al. 2022 – Kallitsis E., Korre A. and Kelsall G.H. 2022. Life cycle assessment of recycling options for automotive Li-ion battery packs. Journal of Cleaner Production 371, DOI: 10.1016/j.jclepro.2022.133636.
 
22.
Kirkham, K. and Toplišek, A. 2023. The impact of western sanctions on global supply chains and the green transition. [In:] The Routledge Handbook of the Political Economy of Sanctions, pp. 234–248, DOI: 10.4324/9781003327448-24.
 
23.
Kondratiev, V.B. 2020. The «traditional» materials for new economy, Gornaya Promyshlennost, 2020(4), pp. 109–119, DOI: 10.30686/1609-9192-2020-4-109-119 (in Russian).
 
24.
Kondrat’ev et al. 2020 – Kondrat’ev V.B., Popov V.V. and Kedrova G.V. 2020. Global value chains transformation: Three industries’ cases. World Economy and International Relations 64(3), pp. 68–79 (in Russian).
 
25.
Kustra et al. 2023 – Kustra, A., Lorenc, S., Podobińska-Staniec, M. and Wiktor-Sułkowska, A.2023. Value chains in the high-tech raw materials industry – example of the lithium value chain. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 4(39), pp. 5–22. DOI: 10.24425/gsm.2023.148165.
 
26.
Laing, T. and Pinto, A.N. 2023. Artisanal and small-scale mining and the low-carbon transition: Challenges and opportunities. Environmental Science and Policy 149, DOI: 10.1016/j.envsci.2023.103563.
 
27.
Lal, A. and You, F. 2023. Will reshoring manufacturing of advanced electric vehicle battery support renewable energy transition and climate targets? Science Advances 9(24), DOI: 10.1126/sciadv.adg6740.
 
28.
Lebrouhi et al. 2022– Lebrouhi, B.E., Baghi, S., Lamrani, B., Schall, E. and Kousksou, T. 2022. Critical materials for electrical energy storage: Li-ion batteries. Journal of Energy Storage 55(2), DOI: 10.1016/j.est.2022.105471.
 
29.
Manjong et al. 2023 – Manjong N.B., Bach V., Usai, L., Marinova, S., Burheim, O.S., Finkbeiner, M. and Strømman, A.H. 2023. A comparative assessment of value chain criticality of lithium-ion battery cells. Sustainable Materials and Technologies 36, DOI: 10.1016/j.susmat.2023.e00614.
 
30.
Mathieux et al. 2017 – Mathieux, F., Ardente, F., Bobba, S., Nuss, P., Blengini, G., Alves Dias, P., Blagoeva, D., Torres De Matos, C., Wittmer, D., Pavel, C., et al. 2017. Critical Raw Materials and the Circular Economy – Background Report. EUR 28832. Publications Office of the European Union: Luxembourg.
 
31.
Mayyas et al. 2019 – Mayyas, A., Steward, D., Mann, M. 2019. The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies 19, DOI: 10.1016/j.susmat.2018.e00087.
 
32.
Müller et al. 2023 – Müller, M., Schulze, M., Schöneich, S. and Maurer, A. 2023. The energy transition and green mineral value chains: Challenges and opportunities for Africa and Latin America. [In:] South African Journal of International Affairs 30(2), pp. 169–175.
 
33.
Nazar, H. 2021. Chinese Mining in the DRC: From Sicomines to Global Cobalt Monopoly. [Online] https://icsin.org/blogs/2021/0... [Accessed: 2023-11-02].
 
34.
Pourret, O. and Faucon, M.P. 2017. Cobalt. [In:] White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. DOI 10.1007/978-3-319-39193-9_271-2.
 
35.
Schuster et al. 2023 – Schuster, V., Ciacci, L. and Passarini, F. 2023. Mining the in-use stock of energy-transition materials for closed-loop e-mobility. Resources Policy 86, DOI: 10.1016/j.resourpol.2023.104155.
 
36.
Shafique et al. 2022 – Shafique, M., Rafiq, M., Azam, A. and Luo, X. 2022. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resources, Conservation and Recycling 178, DOI: 10.1016/j.resconrec.2021.106061.
 
37.
Shedd K.B. 2023, Geological Survey, Mineral Commodity Summaries, pp. 60–61 [Online:] https://pubs.usgs.gov/periodic... [Accessed: 2023-11-08].
 
38.
Tisserant A. and Pauliuk S. 2016. Matching global cobalt demand under different scenarios for coproduction and mining attractiveness. Journal of Economic Structures 5–4, pp. 1–19, DOI: 10.1186/s40008-016-0035-x.
 
39.
Titoma 2023. Top 10 Electronics companies in 2022 [Online:] https://titoma.com/blog/top-el... [Accessed: 2023-11-15].
 
40.
Van den Brink et al. 2020 – Van den Brink, S. Kleijn, R. Sprecher, B. and Tukker, A. 2020. Identifying Supply Risks by Mapping the Cobalt Supply Chain. Resources, Conservation and Recycling 156, DOI: 10.1016/j.resconrec.2020.104743.
 
41.
Vieceli et al. 2023 – Vieceli, N., Vonderstein, C., Swiontekc, T., Stopić, S., Dertmann, C., Sojka, R., Reinhardt, N., Ekberg, C., Friedrich, B. and Petranikova, M. 2023. Recycling of Li-Ion Batteries from Industrial Processing: Upscaled Hydrometallurgical Treatment and Recovery of High Purity Manganese by Solvent Extraction. Solvent Extraction and Ion Exchange 41(2), pp. 205–220, DOI: 10.1080/07366299.2023.2165405.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top