ORIGINAL PAPER
An investigation of the effects of moderator variables on the lower heating value estimation of lignite deposits in Turkey
 
 
More details
Hide details
1
Eskişehir Osmangazi University
 
 
Submission date: 2023-02-23
 
 
Final revision date: 2023-05-08
 
 
Acceptance date: 2023-05-19
 
 
Publication date: 2023-09-22
 
 
Corresponding author
Mehmet Aksoy   

Eskişehir Osmangazi University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(3):199-216
 
KEYWORDS
TOPICS
ABSTRACT
Turkey has 19.3 billion tons of lignite reserves and the vast majority of these Neogene lignite deposits are preferred for use in thermal power plants due to their low calorific value. The calorific value of lignite used in thermal power plants for electricity generation must be kept under constant control. In the control of calorific value, the estimation of the lower and higher heating values (LHV and HHV) of lignite is of great importance. In the literature, there are many studies that establish a relationship between the heating values of coal and proximate and ultimate analysis variables. In the studies dealing with proximate analysis data, it is observed that although the coefficients of the obtained multiple linear regression models (MRM) are statistically insignificant, these models are used to predict heating values because of the meaningful correlation coefficient. In this study, it is investigated whether moderator variables are effective on LHV estimation with proximate analysis data collected from forty-one lignite basins in different regions of Turkey, and a moderator variable analysis (MVA) model is developed to be used for the prediction of LHV. As a result of the study, it is found that the proposed MVA model is in accordance with observation values (coefficient of determination R2 = 0.951), and absolute and standard errors are also small. Therefore, it is concluded that the use of MVA to estimate the LHV of Turkey’s lignite is found to be more statistically meaningful.
METADATA IN OTHER LANGUAGES:
Polish
Badanie wpływu zmiennych moderatora na szacowanie wartości opałowej złóż węgla brunatnego w Turcji
węgiel brunatny, wartość opałowa, wielokrotna regresja liniowa, analiza moderatora, analiza techniczna
Turcja posiada 19,3 mld ton zasobów węgla brunatnego, a zdecydowana większość tych neogeńskich złóż węgla brunatnego jest preferowana do wykorzystania w elektrowniach cieplnych ze względu na ich niską wartość opałową. Wartość opałowa węgla brunatnego wykorzystywanego w elektrowniach ciepłowniczych do produkcji energii elektrycznej musi być stale kontrolowana. W procesie kontroli wartości opałowej bardzo ważne jest oszacowanie wartości opałowej i ciepła spalania węgla brunatnego. W literaturze istnieje wiele badań, które ustalają związek między wartościami opałowymi węgla a zmiennymi analizy przybliżonej (technicznej) i końcowej. W badaniach dotyczących danych analizy technicznej zaobserwowano, że chociaż współczynniki uzyskanych modeli wielokrotnej regresji liniowej (MRM) są statystycznie nieistotne, modele te są wykorzystywane do przewidywania wartości opałowych ze względu na znaczący współczynnik korelacji. W niniejszym artykule zbadano, czy zmienne moderatora są skuteczne w szacowaniu wartości opałowej (LHV) na podstawie danych z analizy technicznej zebranych z czterdziestu jeden zagłębi węgla brunatnego w różnych regionach Turcji, a także opracowano model analizy zmiennych moderatora (MVA), który ma być wykorzystywany do przewidywania LHV. W wyniku badań stwierdzono, że proponowany model MVA jest zgodny z wartościami obserwacji (współczynnik determinacji R2 = 0,951), a błędy bezwzględne i standardowe są również niewielkie. W związku z tym stwierdzono, że wykorzystanie MVA do oszacowania LHV tureckiego węgla brunatnego jest statystycznie uzasadnione.
REFERENCES (29)
1.
Aguinis, H. 1995. Statistical power problems with moderated multiple regression in management research, Journal of Management 21, pp. 1141–1158, DOI: 10.1016/0149-2063(95)90026-8.
 
2.
Akhtar et al. 2017 – Akhtar, J., Sheikh, N., and Munir, S. 2017. Linear regression-based correlations for estimation of high heating values of Pakistani lignite coals. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39, pp. 1063–1070, DOI: 10.1080/15567036.2017.1289283.
 
3.
Akkaya, A.V. 2009. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology 90, pp. 165–170, DOI: 10.1016/J.FUPROC.2008.08.016.
 
4.
Akkaya, A.V. 2013. Predicting Coal Heating Values Using Proximate Analysis via a Neural Network Approach.
 
5.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35, pp. 253–260, DOI: 10.1080/15567036.2010.509090.
 
6.
Bağlıoğlu, M. 2019. Investigation of flotation properties of hard lignite (Arguvan and Soma) (Sert linyitlerin (Arguvan ve Soma) flotasyon özelliklerinin araştırılması). MSc thesis, Cumhuriyet University Turkey (in Turkish).
 
7.
Baron, R.M. and Kenny, D.A. 1986. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51(6), pp. 1173–1182, DOI: 10.1037/0022-3514.51.6.1173.
 
8.
Boylu, F. and Karaagaclıoglu, İ.E. 2018. Evaluation of coal components-coal calorific value relationship. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University 39, pp. 221–236.
 
9.
Cebeci, V. 2016. Coal gasification process and to investigate the applicability in terms of coal properties in Turkey coal (Kömür gazlaştırma prosesi ve Türkiye kömürlerinde kömür özellikleri açısından uygulanabilirliğinin araştırılması). MSc thesis, Dokuz Eylul University Turkey (in Turkish).
 
10.
Çelik et al. 2015 – Çelik, M., Turunç, Ö. and Bilgin, N. 2015. The impact of perceived justice of employees on psychological capital: moderating effect of employee well-being (Çalışanların örgütsel adalet algılarının psikolojik sermaye üzerine etkisi: çalışanların iyilik halinin düzenleyici rolü). Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi – Dokuz Eylul University The Journal of Graduate School of Social Sciences 16(4), pp 559–585 (in Turkish).
 
11.
Demirbas, A. 2008. Relationships proximate analysis results and higher heating values of lignites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30, pp.1876–1883, DOI: 10.1080/10916460701462846.
 
12.
Demirbaş et al. 2008 – Demirbas, A., Dincer, K., and Topaloglu, N. 2008. Determination and calculation of combustion heats of 20 lignite samples. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30, pp. 917–923, DOI: 10.1080/10826070601082625.
 
13.
Ediger et al. 2014 – Ediger, V.Ş., Berk, I. and Kösebalaban, A. 2014. Lignite resources of Turkey: geology, reserves, and exploration history. International Journal of Coal Geology 132, pp. 13–22, DOI: 10.1016/j.coal.2014.06.008.
 
14.
Enerji Atlası 2020. Electricity generation in Turkey. [Online:] https://www.atlasenerji.com.tr... [Accessed: 2020-02-20].
 
15.
Ercis, A. and Turk, B. 2016. In The Frame of Ethics Consumption, Consumer and The Environment: The Moderator Role of Ecoliteracy (Etik Çerçevesinde Tüketim, Tüketici ve Çevre: Ekolojik Okuryazarlığın Moderatör Rolü). Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi – Journal of Çukurova University Faculty of Economics and Administrative Sciences 20(2), pp. 1–24 (in Turkish).
 
16.
Erdogan, S.G. 2014. Determination of Washability and Thermal Properties of Lignite from Konya Region (Konya bölgesindeki linyitlerin yıkanabilirliği ve termal özelliklerinin belirlenmesi). MSc thesis, Selçuk University Turkey (in Turkish).
 
17.
EÜAŞ 2017. Alpu Thermal Power Plant, Sector B Underground Mining and Ash Landfill Project EIA Application File (Alpu Termik Santrali, B Sektörü Yeraltı Maden İşletmesi ve Kül Düzenli Depolama Tesisi Projesi ÇED Başvuru Dosyası). Ankara: The Electricity Generation Corporation (EÜAŞ), 164 pp. (in Turkish).
 
18.
Fairchild, A.J. and McQuillin, S.D. 2010. Evaluating mediation and moderation effects in school psychology: a presentation of methods and review of current practice. Journal of School Psychology 48(1), pp. 53–84, DOI: 10.1016/j.jsp.2009.09.001.
 
19.
Huda, M. 2014. Development of New Equations for Estimating Gross Calorific Value of Indonesian Coals. Indonesian Mining Journal 17(1), pp. 10–19, DOI: 10.30556/imj.Vol17.No1.2014.340.
 
20.
Jacoby, J. and Sassonberg, K. 2011. It takes four to tango: why a variable cannot be a mediator and a moderator at the same time. [Online:] https://www.academia.edu/19288... [Accessed: 2020-12-20].
 
21.
Koç et al. 2014 – Koç, F., Şahin, N.K. and Özbek, V. 2014. The moderator effect of switching cost on the relationship between service failure and perceived service quality: a study toward small businesses and their accountants (Hizmet hataları ve algılanan kalite arasındaki ilişki üzerinde değiştirme maliyetinin düzenleyici etkisi: küçük işletmeler ve hizmet satın aldıkları muhasebecilere yönelik bir uygulama), Pazarlama ve Pazarlama Araştırmaları Dergisi – Journal of Marketing and Marketing Researches 14, pp. 21–46 (in Turkish).
 
22.
Majumder et al. 2008 – Majumder, A., Jain, R., Banerjee, P. and Barnwal, J. 2008. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 87, pp. 3077–3081, DOI: 10.1016/j.fuel.2008.04.008.
 
23.
Ministry of Energy and Natural Resources (MENR) 2020. Coal. [Online:] https://www.enerji.gov.tr [Accessed: 2020-01-05] (in Turkish).
 
24.
Nima et al. 2013 – Nima, A.A., Rosenberg, P., Archer, T. and Garcia, D. 2013. Anxiety, affect, self-esteem, and stress: mediation and moderation effects on depression. PLoS One 8(9), DOI: 10.1371/journal.pone.0073265.
 
25.
Özdemir, E. and Sarici, D.E. 2020. Estimation of calorific values of some of Turkish Lignites by artificial neural network and multiple regression. Current Physical Chemistry 10, pp. 1–9, DOI: 10.2174/1877946809666191120125450.
 
26.
Parikh et al. 2005 – Parikh, J., Channiwala, S. and Ghosal, G. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84(5), pp. 487–494, DOI: 10.1016/j.fuel.2004.10.010.
 
27.
Sensogut et al. 2008 – Sensogut, C., Ozsen, H. and Demirbas, A. 2008. Combustion characteristics of 24 lignite samples. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30, pp. 420–428, DOI: 10.1080/00908310600712224.
 
28.
Temel, H.A. 2007. Investigation on Evaluation Possibilities of Adıyaman-Gölbaşı Lignite (Adıyaman-Gölbaşı linyitinin değerlendirilme olanaklarının araştırılması). Phd thesis, Eskişehir Osmangazi University Turkey (in Turkish).
 
29.
Tuncalı et al. eds. 2002 – Tuncalı, E., Çiftci, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, H. and Şahin, N. 2002. Chemical and technological properties of Turkish tertiary coals (Türkiye tersiyer kömürlerinin kimyasal ve teknolojik özellikleri). Ankara: Maden Tetkik ve Arama Genel Müdürlüǧü – General Directorate of Mineral Research and Exploration, 402 pp. (in Turkish).
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top