ORIGINAL PAPER
Assessment of the Vulnerability of Zygmunt Spring Water to Pollution (southern Poland)
 
More details
Hide details
1
University of Silesia
 
These authors had equal contribution to this work
 
 
Submission date: 2024-09-19
 
 
Final revision date: 2024-11-12
 
 
Acceptance date: 2024-11-16
 
 
Publication date: 2025-03-19
 
 
Corresponding author
Dominika Dąbrowska   

University of Silesia
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(1):197-218
 
KEYWORDS
TOPICS
ABSTRACT
Karst aquifers are among the most widely used drinking water resources worldwide. However, their water quality can deteriorate due to negative anthropogenic impacts. Monitoring the quality of spring water is crucial, both in terms of physicochemical and bacteriological parameters. In this study, 34 parameters of the Zygmunt Spring in Złoty Potok (southern Poland) were analyzed across three measurement series. The average water conductivity was 370 µS/cm, with a pH of approximately 7 and a flow rate of about 17 L/s. The Backman Pollution Index (average value: –13) and the Water Quality Index (average value: 94) were calculated, indicating that bacterial contamination poses the greatest risk to water quality. Additionally, geochemical modeling was conducted to identify minerals undergoing dissolution and precipitation. The results confirmed the dissolution of calcite and dolomite, as well as the precipitation of goethite and hematite.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Ocena podatności wód na zanieczyszczenia w źródle Zygmunta (południowa Polska)
źródło, wskaźnik zanieczyszczenia, wskaźnik jakości wody, Złoty Potok
Systemy krasowe należą do najbardziej niejednorodnych i anizotropowych ze względu na system kanałów krasowych i szczelin powstałych w wyniku nierównomiernego przepływu wód podziemnych, co tworzy złożone warunki hydrogeologiczne. Należą również do najczęściej wykorzystywanych zasobów wody pitnej na świecie. Jednak ze względu na negatywne oddziaływanie antropogeniczne jakość ich wody może się pogorszyć. Monitorowanie jakości wody w źródłach jest niezwykle ważne, zarówno pod względem parametrów fizykochemicznych, jak i bakteriologicznych. W trzech seriach pomiarowych zbadano 34 parametry w źródle Zygmunta w Złotym Potoku (południowa Polska). Średnia przewodność wody w tym źródle wynosi 370 µS/cm, pH wynosi około 7, a natężenie przepływu około 17 l/s. Pierwszym elementem badań nad jakością wody w źródle Zygmunta było wypełnienie formularza – tzw. znormalizowanej metody Howarda, która ma na celu określenie ryzyka dla źródła. W ramach badań obliczono Backman Pollution Index (średnia wartość –13) i Water Quality Index (średnia wartość 94). Wyniki obliczeń wskazują, że bakterie stanowią największe zagrożenie dla wody. Bliskie sąsiedztwo szlaków transportowych, pól uprawnych lub obszarów niesanitarnych może stanowić zagrożenie dla substancji nieorganicznych lub bakterii. Przeprowadzono również modelowanie geochemiczne w celu zidentyfikowania minerałów rozpuszczonych i wytrąconych w wodzie. W wyniku modelowania potwierdzono rozpuszczenie kalcytu i dolomitu oraz wytrącanie się getytu i hematytu.
REFERENCES (48)
1.
Adesakin et al. 2020 – Adesakin, T.A., Oyewale, A.T., Bayero, U., Mohammed, A.N., Aduwo, I.A., Ahmed, P.Z., Abubakar, N.D. and Barje, I.B. 2020. Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon 6(8), DOI: 10.1016/j.heliyon.2020.e04773.
 
2.
Ansari et al. 2015 – Ansari, M.A., Deodhar, A., Kumar, U.S. and Khatti, V.S. 2015. Water quality of few springs in outer Himalayas – A study on the groundwater–bedrock interactions and hydrochemical evolution. Groundwater for sustainable development 1(1–2), pp. 59–67, DOI: 10.1016/j.gsd.2016.01.002.
 
3.
Aquilina et al. 2003 – Aquilina, L., Ladouche, B., Doerfliger, N. and Bakalowicz, M. 2003. Deep water circulation, residence time, and chemistry in a karst complex. Ground Water 41(6), pp. 790–805, DOI: 10.1111/j.1745-6584.2003.tb02420.x.
 
4.
Arvizu, I.S. and Murray, S.R. 2021. A Simple, Quantitative Assay for the Detection of Viable but Non-Culturable (VBNC) Bacteria. STAR Protocols 2(3), DOI: 10.1016/j.xpro.2021.100738.
 
5.
Backman et al. 1998 – Backman, B., Bodiš, D., Lahermo, P., Rapant, S. and Tarvainen, T. 1998. Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology 36, pp. 55–64, DOI: 10.1007/s002540050320.
 
6.
Beeckman et al. 2018 – Beeckman, F., Motte, H. and Beeckman, T. 2018. Nitrification in agricultural soils: impact, actors and mitigation. Current opinion in biotechnology 50, pp.166–173, DOI: 10.1016/j.copbio.2018.01.014.
 
7.
Biran, D. and Ron, E.Z. 2018. Extraintestinal pathogenic Escherichia coli. [In:] Current Topics in Microbiological Immunology 416, pp. 149–161, DOI: 10.1007/82_2018_108.
 
8.
Chen et al. 2017 – Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G. and Goldscheider, N. 2017. The World Karst Aquifer Mapping Project: Concept, Mapping Procedure and Map of Europe. Hydrogeology Journal 25(3), pp. 771–785, DOI: 10.1007/s10040-016-1519-3.
 
9.
Cole et al. 1994 – Cole, J., Caraco, N., Kling, G. and Kratz, T. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265, pp. 1568–1570, DOI: 10.1126/science.265.5178.1568.
 
10.
Darvishmotevalli et al. 2019 – Darvishmotevalli, M., Moradnia, M., Noorisepehr, M., Fatehizadeh, A., Fadaei, S., Mohammadi, H., Salari, M., Jamali, H.A. and Daniali, S.S. 2019. Evaluation of Carcinogenic Risks Related to Nitrate Exposure in Drinking Water in Iran. MethodsX 6, pp. 1716–1727, DOI: 10.1016/j.mex.2019.07.008.
 
11.
Drysdale et al. 2003 – Drysdale, R., Lucas, S. and Carthew, K. 2003. The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream. Hydrological Processes 17(17), pp. 3421–3441, DOI: 10.1002/hyp.1301.
 
12.
Frankignoulle et al. 1998 – Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E. and Théate, J. 1998. Carbon Dioxide Emission from European Estuaries. Science 282, pp. 434–436, DOI: 10.1126/science.282.5388.434.
 
13.
Gascoyne, M. 2004. Hydrogeochemistry, Groundwater Ages and Sources of Salts in a Granitic Batholith on the Canadian Shield, Southeastern Manitoba. Applied Geochemistry 19(4), pp. 519–560, DOI: 10.1016/S0883-2927(03)00155-0.
 
14.
Geyer et al. 2007 – Geyer, T., Birk, S., Licha, T., Liedl, R. and Sauter, M. 2007. Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45, pp. 36–45, DOI: 10.1111/j.1745-6584.2006.00261.x.
 
15.
Gibbs, R.J. 1970. Mechanisms Controlling World Water Chemistry. Science 170(3962), pp. 1088–1090, DOI: 10.1126/science.170.3962.1088.
 
16.
Guo et al. 2019 – Guo, Y., Qin, D., Li, L., Sun, J., Li, F. and Huang, J. A. 2019. Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China. Water 11, DOI: 10.3390/w11050947.
 
17.
Han et al. 2015 – Han, Z., Tang, C., Wu, P., Zhang, R., Zhang, C. and Sun, J. 2015. Hydrogeochemical characteristics and associated mechanism based on groundwater dating in a karstic basin, Guizhou Province, China. Environmental Earth Sciences 73, pp. 67–76, DOI: 10.1007/s12665-014-3395-2.
 
18.
Harichandan et al. 2017 – Harichandan, A., Sekhar Patra, H. and Mohan Sethy, K. 2017. Evaluation of Water Quality of Local Streams at Gandhamardan Iron Mines, Suakati, Keonjhar District of Odisha, India. Journal of Pollution Effects & Control 5(3), DOI: 10.4172/2375-4397.1000199.
 
19.
Heliasz et al. 1986 – Heliasz, Z., Ptak, B. Więckowski, R. and Zieliński, T. 1986. Explanation to detailed geological map of Poland, sheet Janów (846) 1:50000 (Objaśnienia do szczegółowej mapy geologicznej Polski w skali 1:50000 arkusz Janów) Warszawa: Wyd. Geol., (in Polish).
 
20.
Hernandez-Pastor et al. 2023 – Hernandez-Pastor, L., Geurtsen, J., Baugh, B., El Khoury, A. C., Kalu, N., Gauthier-Loiselle, M., Bungay, R., Cloutier, M., Sarnecki, M. and Saade, E. 2023. Clinical Burden of Invasive Escherichia Coli Disease among Older Adult Patients Treated in Hospitals in the United States. BMC Infectious Diseases, 23(1), DOI: 10.1186/s12879-023-08479-3.
 
21.
Janik et al. 2024 – Janik, K., Ślósarczyk, K. and Sitek, S. 2024. A study of riverbank filtration effectiveness in the Kępa Bogumiłowicka well field, southern Poland. Journal of Hydrology: Regional Studies 53, DOI: 10.1016/j.ejrh.2024.101834.
 
22.
Juntunen et al. 2017 – Juntunen, J., Meriläinen, P. and Simola, A. 2017. Public health and economic risk assessment of waterborne contaminants and pathogens in Finland. The Science of the total environment 599–600, pp. 873–882, DOI: 10.1016/j.scitotenv.2017.05.007.
 
23.
Karkocha, R. 2021. Assessment of Changes in the Quality of Groundwater in the Region of the Municipal Landfill in Wojkowice. Acta Scientiarum Polonorum-Formatio Circumiectus 20(1), pp. 43–54, DOI: 10.15576/ASP.FC/2021.20.1.43.
 
24.
Kayastha, S.P. 2015. Geochemical Parameters of Water Quality of Karra River, Hetauda Industrial Area, Central Nepal. Journal of Institute of Science and Technology 20(2), pp. 31–36, DOI: 10.3126/jist.v20i2.13945.
 
25.
Knopek, T. and Dabrowska, D. 2021. The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill. Toxics 9(3), DOI: 10.3390/toxics9030066.
 
26.
Kumar et al. 2017 – Kumar, M., Ramanathan, AL., Tripathi, R., Farswan, S., Kumar, D. and Bhattacharya, P. 2017. A Study of Trace Element Contamination Using Multivariate Statistical Techniques and Health Risk Assessment in Groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere 166, pp. 135–145, DOI: 10.1016/j.chemosphere.2016.09.086.
 
27.
Kuniansky et al. 2022 – Kuniansky, E.L., Taylor, C.J., Williams, J.H. and Paillet, F. 2022. Introduction to karst aquifers. The Groundwater Project. DOI: 10.21083/978-1-77470-040-2.
 
28.
Lahr, J. and Kooistra, L. 2010. Environmental risk mapping of pollutants: State of the art and communication aspects. Science of The Total Environment 408(18), pp. 3899–3907, DOI: 10.1016/j.scitotenv.2009.10.045.
 
29.
Li et al. 2023 – Li, Q., Han, Z., Tian, Y., Xiao, H. and Yang, M. 2023. Risk assessment of heavy metal in farmlands and crops near Pb-Zn mine tailing ponds in Niujiaotang, China. Toxics 11, DOI: 10.3390/toxics11020106.
 
30.
Lundberg et al. 2018 – Lundberg, J.O., Carlström, M. and Weitzberg, E. 2018. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism 28(1), pp. 9–22, DOI: 10.1016/j.cmet.2018.06.007.
 
31.
Kistowski et al. 2018 – Kistowski, M., Myga-Piątek, U. and Solon, J. 2018. Studies on the Physico-Geographical Regionalization of Poland (Studia Nad Regionalizacją Fizycznogeograficzną Polski). Prace Geograficzne 266 (in Polish).
 
32.
Meng et al. 2016 – Meng, Q., Zhang, J., Zhang, Z. and Wu, T. 2016. Geochemistry of Dissolved Trace Elements and Heavy Metals in the Dan River Drainage (China): Distribution, Sources, and Water Quality Assessment. Environmental Science and Pollution Research 23(8), pp. 8091–8103, DOI: 10.1007/s11356-016-6074-x.
 
33.
Okoń et al. 2020 – Okoń, D., Błońska, A., Różkowski, J. and Wojtal, A.Z. 2020. Natural and Anthropogenic Factors Controlling the Calcareous Springs Biodiversity (Cracow-Częstochowa Upland, Poland). Ecohydrology & Hydrobiology 20 (4), pp. 644–659, DOI: 10.1016/j.ecohyd.2020.06.007.
 
34.
Omara et al. 2019 – Omara, T., Nassazi, W., Adokorach, M. and Kagoya, S. 2019. Physicochemical and Microbiological Quality of Springs in Kyambogo University Propinquity. OAlib 6(1), pp. 1–13, DOI: 10.4236/oalib.1105100.
 
35.
Pacholewski, A. and Guzik, M. 1997. Hydrogeological map of Poland on a scale of 1:50,000, Janów sheet (846) (Mapa hydrogeologiczna Polski w skali 1:50 000 arkusz Janów). Warszawa: PGI (in Polish).
 
36.
Paikaray, S. and Mahajan, T. 2023. Hydrogeochemical Processes, Mobilization Controls, Soil-Water-Plant-Rock Fractionation and Origin of Fluoride around a Hot Spring Affected Tropical Monsoonal Belt of Eastern Odisha, India. Applied Geochemistry 148, DOI: 10.1016/j.apgeochem.2022.105521.
 
37.
Pu et al. 2013 – Pu, J., Yuan, D., Zhao, H. and Shen, L. 2013. Hydrochemical and pCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: piston effects, dilution effects, soil CO2 and buffer effects. Environmental Earth Sciences 71(9), pp. 4039–4049, DOI: 10.1007/s12665-013-2787-z.
 
38.
Raymond et al. 1997 – Raymond, P., Caraco, N. and Cole, J. 1997. Carbon Dioxide Concentration and Atmospheric Flux in the Hudson River. Estuaries 20, pp. 381–390.
 
39.
Regulation of the Minister of Health of December 7, 2017 on the quality of water intended for human consumption (Journal of Laws of 2017, item 2294).
 
40.
Regulation of the Minister Maritime Economy and Inland Navigation of October 11, 2019 on the criteria and method of assessing the status of groundwater bodies (Journal of Laws of 2017, item 2294).
 
41.
Ruman, M. and Dąbrowska, D. 2024. Evaluation of Water Quality from the Zimny Sztok Spring (Southern Poland) – Preliminary Results. Sustainability 16, DOI: 10.3390/su16124962.
 
42.
Sari et al. 2022 – Sari, M.M., Andarani, P., Notodarmojo, S., Harryes, R.K., Nguyen, M.N., Yokota, K. and Inoue, T. 2022. Plastic Pollution in the Surface Water in Jakarta, Indonesia. Marine Pollution Bulletin 182, DOI: 10.1016/j.marpolbul.2022.114023.
 
43.
Sitti et al. 2022 – Sitti Nur Asnin, Nnko, M., Sadock Josephat, Mahecha, A., Elisante Mshiu, Bertotti, G. and Brehme, M. 2022. Identification of Water–Rock Interaction of Surface Thermal Water in Songwe Medium Temperature Geothermal Area, Tanzania. Environmental earth sciences 81(21), DOI: 10.1007/s12665-022-10594-4.
 
44.
Tamasi, G. and Cini, R. 2004. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. The Science of the total environment 327(1–3), pp. 41–51, DOI: 10.1016/j.scitotenv.2003.10.011.
 
45.
Thapa et al. 2020 – Thapa, B., Pant, R.R. and Thakuri, S. and Pond, G. 2020. Assessment of spring water quality in Jhimruk River watershed, Lesser Himalaya, Nepal. Environmental Earth Sciences 79, DOI: 10.1007/s12665-020-09252-4.
 
46.
Vesković et al. 2024 – Vesković, J., Lučić, M., Ristić, M., Perić-Grujić, A. and Onjia, A. 2024. Spatial variability of rare earth elements in groundwater in the vicinity of a coal-fired power plant and associated health risk. Toxics 12, DOI: 10.3390/toxics12010062.
 
47.
Zheng et al. 2018 – Zheng, X.Q., Zang, H.F., Zhang, Y.B., Chen, J.F., Zhang, F. and Shen, Y. 2018. A Study of Hydrogeochemical Processes on Karst Groundwater Using a Mass Balance Model in the Liulin Spring Area, North China. Water 10(7), DOI: 10.3390/w10070903.
 
48.
Zhu et al. 2023 – Zhu, L., Husny, Z.J.B.M., Samsudin, N.A., Xu, H. and Han, C. 2023. Deep Learning Method for Minimizing Water Pollution and Air Pollution in Urban Environment. Urban Climate 49, DOI: 10.1016/j.uclim.2023.101486.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top