ORIGINAL PAPER
Bioleaching using Acidithiobacillus Thiooxidans – an option for element recovery from highly alkaline waste incineration ash?
 
More details
Hide details
1
Jagiellonian University
 
2
AGH University of Science and Technology
 
 
Submission date: 2022-04-10
 
 
Final revision date: 2022-06-01
 
 
Acceptance date: 2022-08-06
 
 
Publication date: 2022-09-30
 
 
Corresponding author
Monika Kasina   

Jagiellonian University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(3):105-120
 
KEYWORDS
TOPICS
ABSTRACT
Bioleaching research considers both the bio- and anthroposphere in the search for novel ways to recover resources and elements, which is important to the concept of sustainable development. Since the efficient, cost-effective and simple recovery of resources is of increasing importance in the circular economy model, the bioleaching of metals is a method currently gaining interest. The process is also of importance considering the need for the neutralization of waste materials/resources that allow for their safe storage and use. In this study, Acidithiobacillus thiooxidans bacteria, which is commonly found and widely utilized in the bioleaching process due to its high tolerance to heavy metals, was used in a twenty-eight-day experiment. The manner in which bacteria inhabit incineration residues was observed using fluorescence optical microscopy and scanning electron microscopy. The concentration of elements in incineration residues and in the post-reaction solutions was measured using inductively coupled plasma mass spectrometry and the efficiency of element recovery was calculated based on the results. Municipal waste incineration bottom ash and sewage sludge incineration fly ash were considered in the experiment. The extraction rates were far from satisfactory, with the average 20 and 50% for bottom ash and sewage sludge ash, respectively. The obtained results were consistent with microscopic observations where the relative number of bacteria increased only slightly over time in the sewage-sludge fly ash and was barely observed in the bottom ash of municipal-waste incineration.
ACKNOWLEDGEMENTS
This publication has been funded from the Anthropocene Priority Research Area budget under the program “Excellence Initiative – Research University” at the Jagiellonian University. The authors are grateful to dr hab. Anna Potysz from the University of Wroclaw for providing bacterial strains used in the experiment. The authors also thank Mr Piotr Rusiniak for ICP-MS analyses
METADATA IN OTHER LANGUAGES:
Polish
Bioługowanie z wykorzystaniem Acidithiobacillus thiooxidans – rozwiązanie dla odzyskiwania pierwiastków z wysokoalkalicznych popiołów ze spalani odpadów?
bioługowanie, Acidithiobacillus thiooxidans, popiół ze spalania osadów ściekowych, popiół ze spalania odpadów komunalnych, surowce odpadowe
Badania procesów bioługowania to analiza przenikania się bio- i antroposfery, w poszukiwaniu nowych sposobów na odzyskiwanie zasobów i pierwiastków. Granica tych sfer ma duży potencjał dla wdrażania modelu zrównoważonego rozwoju. Ze względu na fakt, że efektywne, tanie oraz proste metody odzyskiwania surowców mają rosnące znaczenie w gospodarce o obiegu zamkniętym, bioługowanie metali jest metodą, która obecnie cieszy się coraz większym zainteresowaniem. Jest to również proces istotny w kontekście neutralizacji surowców odpadowych umożliwiającej ich bezpieczne magazynowania i zastosowanie. W przeprowadzonym badaniu powszechnie występujące bakterie Acidithiobacillus thiooxidans, które są często używane w procesach bioługowania ze względu na fakt ich wysokiej tolerancji na metale ciężkie, zostały wykorzystane w 28-dniowym eksperymencie. Sposób i zmienność w czasie, w jaki bakterie zasiedlają osad po spalaniu, został zaobserwowany przy pomocy fluorescencyjnej mikroskopii optycznej i skaningowej mikroskopii elektronowej. Stężenie pierwiastków w osadach po spalaniu i w poreakcyjnych roztworach zostało zmierzone przy użyciu indukcyjnie sparowanej plazmowej spektrometrii mas, a efektywność odzyskiwania pierwiastków została obliczona na podstawie uzyskanych wyników. Popioły po spalaniu odpadów komunalnych oraz popioły lotne ze spalania osadów ściekowych zostały ujęte w eksperymencie. Stosunki ekstrakcji pierwiastków były dalekie od zadowalających ze średnią 20 oraz 50% dla popiołów po spalaniu odpadów komunalnych oraz popiołu z osadów ściekowych. Pozyskane wyniki są w zgodzie z obserwacjami dokonanymi przy pomocy mikroskopii, gdzie relatywna liczba bakterii wzrosła niewiele we wspomnianym czasie w przypadku popiołów ściekowych i była w zasadzie niedostrzegalna w przypadku popiołów dennych.
 
REFERENCES (25)
1.
Bosecker, K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews 20(3–4), pp. 591–604, DOI: 10.1111/j.1574-6976.1997.tb00340.x.
 
2.
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU. [Online:] https://ec.europa.eu/transpare... [Accessed: 2017-09-13].
 
3.
European Commission. Study on the EU’s list of Critical Raw Materials – Final Report Brussels, Belgium, 2020.
 
4.
European Commission. Report on Critical Raw Materials for the EU 2014. In Report of the Ad-Hoc Working Group on Defining Critical Raw Materials; Raw Materials Supply Group: Brussels, Belgium, 2014.
 
5.
Fang, D. and Zhou, L.X. 2006. Effect of sludge dissolved organic matter on oxidation of ferrous iron and sulfur by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Water, Air, & Soil Pollution 171, pp. 81–94, DOI: 10.1007/s11270-005-9014-9.
 
6.
Fazzini et al. 2011 – Fazzini, R.A.B., Levican, G. and Parada, P. 2011. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Applied Microbiology and Biotechnology 89(3), pp. 771–780, DOI: 10.1007/s00253-010-3063-8.
 
7.
Funari et al. 2015 – Funari, V., Salminen, J., Mäkinen, J., Revitzer, H. and Brag, R. 2015. Metal recovery from municipal solid waste incinerators fly ash by acid leaching and bioleaching. Fifteenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 5–9 October 2015.
 
8.
Gómez-Ramírez et al. 2020 – Gómez-Ramírez, M., Moreno-Villanueva, F. and Rojas-Avelizapa, N.G. 2020. Acidithiobacillus thiooxidans DSM 26636: An Alternative for the Bioleaching of Metallic Burrs. Catalysts 10, DOI: 10.3390/catal10111230.
 
9.
Gu et al. 2017 – Gu, X.Y., Wong, J.W.C. and Tyagi, R.D. 2017. Bioleaching of Heavy Metals From Sewage Sludge for Land Application. Current Developments in Biotechnology and Bioengineering 241–265, DOI: 10.1016/b978-0-444-63664-5.00011-3.
 
10.
Kamizela et al. 2021 – Kamizela, T., Grobelak, A. and Worwag, M. 2021. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies 14, DOI: 10.3390/en14113336.
 
11.
Kasina et al. 2020 – Kasina, M., Kowalski, P.R., Kajdas, B. and Michalik, M. 2020. Assessment of Valuable and Critical Elements Recovery Potential in Ashes from Processes of Solid Municipal Waste and Sewage Sludge Thermal Treatment. Resources 9(11), pp. 131, DOI: 10.3390/resources9110131.
 
12.
Kasina et al. 2021 – Kasina, M., Kajdas, B. and Michalik, M. 2021. The leaching potential of SS, and MSWI incineration ashes in terms of landfilling safety and potential reuse. Science of the Total Environment 791, pp. 15, DOI: 10.1016/j.scitotenv.2021.148313.
 
13.
Lee et al. 2015 – Lee, E., Han, Y., Park, J., Hong, J., Silva, R.A., Kim, S. and Kim, H. 2015. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. Journal of Environmental Management 147, pp. 124–131, DOI: 10.1016/j.jenvman.2014.08.019.
 
14.
Lo, K.S.L. and Chen, Y.H. 1990. Extracting heavy metals from municipal and industrial sludges. Science of the Total Environment 90: 99-116, DOI: 10.1016/0048-9697(90)90189-2.
 
15.
Mäkinen et al. 2019 – Mäkinen, J., Salo, M., Soini, J. and Kinnunen, P. 2019. Laboratory Scale Investigations on Heap (Bio)leaching of Municipal Solid Waste Incineration Bottom Ash. Minerals 9(5), pp. 290, DOI: 10.3390/min9050290.
 
16.
Mikoda et al. 2019 – Mikoda, B., Potysz, A. and Kmiecik, E. 2019. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. Journal of Environmental Economics and Management 236, pp. 436–445, DOI: 10.1016/j.jenvman.2019.02.032.0.
 
17.
Naseri et al. 2019 – Naseri, T., Bahaloo-Horeh, N. and Mousavi S.M. 2019. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Journal of Environmental Economics and Management 235, pp. 357–367, DOI: 10.1016/j.jenvman.2019.01.086.
 
18.
Pathak et al. 2009 – Pathak, A., Dastidar, M.G. and Sreekrishnan, T.R. 2009. Bioleaching of heavy metals from sewage sludge: a review. Journal of Environmental Economics and Management 90, pp. 2343–2353, DOI: 10.1016/j.jenvman.2008.11.005.
 
19.
Potysz et al. 2016 – Potysz, A., Lens, P.N.L., van de Vossenberg, J., Rene, E.R., Grybos, M., Guibaud, G., Kierczak, J. and van Hullebusch, E.D. Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Applied Geochemistry 68, pp. 39–52, DOI: 10.1016/j.apgeochem.2016.03.006.
 
20.
Pacholewska, M. 2003. Microbial leaching of blende flotation concentrate using Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans. Physicochemical Problems of Mineral Processing 37, pp. 57–68.
 
21.
Rouchalova et al. 2020 – Rouchalova, D., Rouchalova, K., Janakova, I., Cablik, V. and Janstova, S. 2020. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals 10(11), pp. 1013, DOI: 10.3390/min10111013.
 
22.
Tyagi et al. 1988 – Tyagi, R.D., Couillard, D. and Tran, F. 1988. Heavy metals removal from anaerobically digested sludge by chemical and microbiological method, Environmental Pollution 50(4), pp. 295–316, DOI: 10.1016/0269-7491(88)90194-7.
 
23.
Wen et al. 2012 – Wen, Y.M., Wang, Q.P., Tang, C. and Chen, Z.L. 2012. Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans – a comparative study. Journal of Soils and Sediments 12, pp. 900–908, DOI: 10.1007/s11368-012-0520-2.
 
24.
Willner et al. 2018 – Willner, J., Fornalczyk, A., Gajda, B. and Saternus, M. 2018. Bioleaching of indium and tin from used LCD panels. Physicochemical Problems of Mineral Processing 54(3), pp. 639–645, DOI: 10.5277/ppmp1878.
 
25.
Yang et al. 2019 – Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S. and Yan, L. 2019. Acidithiobacillus thiooxidans and its potential application. Applied Microbiology and Biotechnology 103, pp. 7819–7833, DOI: 10.1007/s00253-019-10098-5.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top