Depositional environment of Paleogen amber-bearing quartz-glauconite sands from Zdolbuniv (Rivne region, NW Ukraine): mineralogical and petrological evidences
 
More details
Hide details
1
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
 
2
National University of Water and Environmental Engineering, Rivne, Ukraine
 
3
Polish Geological Institute – National Research Institute, Warsaw, Poland
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2017;33(4):45-62
 
KEYWORDS
ABSTRACT
Amber-bearing sands from Zdolbuniv mine are Paleogene fine-grained (0.6–0.12 mm) clastic rocks. The material is poorly rounded and moderately sorted out. It mainly consists of quartz, glauconite, and subordinately, feldspars (K-feldspars and plagioclases), mica, carbonates, zircon, epidote, fossil resins (Baltic amber) and ore minerals such as hematite, rutile, anatase, ilmenite. The presence of glauconite in the sands proves that sedimentation basin had to be marine reservoir. The variable composition of individual glauconite grains suggests the environmental conditions had to change during the sedimentation of clastic rocks. The occurrence of minerals, assembly such as zircon, epidote, ilmenite, rutile, anatase in the sands as well as the brown CL color of quartz grains, may suggest that majority of clastic material originated from metamorphic rocks, most probably coming from the Ukrainian Shield. Together with metamorphic material the fragment of fossil resins, i.e. Baltic amber, from the Paleogene off-shore forests could be transported to the sedimentation basin. Nowadays the bottom part of the analyzed profile is the most promising for the recovery of glauconite, whereas the exploration of Baltic amber may be initiated from the top of the profile.
METADATA IN OTHER LANGUAGES:
Polish
Środowisko depozycji paleogeńskich kwarcowo-glaukonitowych piasków bursztynonośnych z kopalni Zdolbuniv (obwód rowieński, NW Ukraina) w świetle badań mineralogiczno-petrologicznych
piasek bursztynonośny, obwód Równe, miasto Zdolbuniv, Ukraina
Piaski bursztynonośne z kopalni Zdolbuniv (obwód rowieński, NW Ukraina) to paleogeńskie, drobnoziarniste (0,6–0,12 mm) skały klastyczne. Materiał ziarnisty tych piasków jest słabo obtoczony i średnio wysortowany. Stanowią go głównie kwarc i glaukonit oraz występujące w podrzędnych ilościach: skalenie (K-skalenie i plagioklazy), miki, węglany, cyrkon, epidot, żywice kopalne (bursztyn) i minerały rudne, takie jak: hematyt, rutyl, anataz, ilmenit. Obecność glaukonitu wskazuje na środowisko morskie sedymentacji tego materiału. Duże zróżnicowanie składu chemicznego poszczególnych osobników glaukonitu sugeruje, że w trakcie sedymentacji materiału ziarnowego dochodziło do zmian warunków środowiskowych w samym basenie. Obecność w przedmiotowych piaskach takich minerałów, jak np. cyrkon, epidot, ilmenit, rutyl, anataz, jak i barwy ziaren kwarcu na obrazach CL wskazują, że większość materiału ziarnowego pochodzi ze skał metamorficznych, najprawdopodobniej budujących podłoże Tarczy Ukraińskiej. Wraz ze wspomnianym materiałem do basenu sedymentacyjnego mogły być transportowane fragmenty paleogeńskiej żywicy (bursztynu), pochodzące z pobliskich lasów. Analizowany profil piasków jest w dolnej części wzbogacony w glaukonit, podczas gdy górna jego część jest wzbogacona we fragmenty żywic kopalnych.
 
REFERENCES (22)
1.
Balachandran, U. and Eror, N.G. 1982. Raman spectrum of titanium dioxide. Journal of Solid State Chemistry 42, pp. 276–282.
 
2.
Czebanienko, I.I., Wiszniakow, I.B. and Wlasow, B.I. 1990. Volyn-Podole geotectonics (in Russian), pp. 244.
 
3.
Dooley, J.H. 2006. Glauconite [In:] Baker, J.M., Kogel, J.E., Krukowski, S.T. and Triedi, N.C. Industrial Minerals and Rocks. Commodities, Markets and Uses. Ed. 7, Society for Mining, Metallurgy and Exploration, Inc., Littleton, pp. 494–504.
 
4.
Ehlmann et al. 1963 – Ehlmann, A.J.. Hulings, N.C. and Glover, E.D. 1963. Stages of glauconite formation in modern foraminiferal sediments. Journal of Sedimentary Petrology 33(1), pp. 87–96.
 
5.
Engel, M.S. and Perkovsky, E.E. 2006. An Eocene Bee in Rovno Amber, Ukraine (Hymenoptera: Megachilidae). American Museum Novitates, nr 3506. American Museum of Natural History, New York.
 
6.
Hardcastle, F.D. 2011. Raman Spectroscopy of Titania (TiO2). Nanotubular Water-Splitting Catalysts. Journal of the Arkansas Academy of Science 65, pp. 43–48.
 
7.
Hower, J. and Thompson, G.R. 1975. The mineralogy of glauconite. Clays and Clay Minerals 23, pp. 291–293.
 
8.
Huggett, J.M. and Gale, A.S. 1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal of the Geological Society 154, pp. 897–912.
 
9.
Ignatov, M.S. and Perkovsky, E.E. 2011. Mosses from Rovno Amber. Arctoa 20, pp. 1–18.
 
10.
Kasiński, J.R. 2016. Złoża bursztynu północnej Lubelszczyzny – historia poznania, budowa geologiczna, perspektywy [In:] Gazda L. ed. Lubelski bursztyn. Wyd. Miasta Kraków, pp. 70–93.
 
11.
Kayama et al. 2010 – Kayama, M., Nakano, S. and Nishido, H. 2010. Characteristics of emission in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution. American Mineralogist 95, pp. 1783–1795.
 
12.
Krzowski, Z. 1995. Glaukonit z osadów trzeciorzędowych regionu lubelskiego i możliwości jego wykorzystania do analiz geochronologicznych. Lublin: Wyd. Uczelniane Politechniki Lubelskiej.
 
13.
Maki et al. 2016 – Maki, S., Ohgo, S. and Nishido, H. 2016. Cathodoluminescence characterization of feldspar minerals from granite-syenite rocks in Iwagijima Island, Ehime Prefecture, Japan. Naturalistae 20, pp. 13–18.
 
14.
Matuszewska, A.L. 2010. Amber (succinite), another fossil, subfossil and modern resins. Katowice: Uniwersytet Śląski i Oficyna Wydawnicza W. Walasek (in Polish).
 
15.
Parańko, I., Pieczonka, J. and Piestrzyński, A. 2011. Geologia wybranych złóż surowców mineralnych Ukrainy. Kraków: Wyd. AGH, pp. 37–58.
 
16.
Pettitjohn et al. 1972 – Pettitjohn, F.J., Potter, P.E. and Siever, R. 1972. Sand and Sandstone. Ed.1, Springer – Verlag, Berlin, Heidelberg, New York, pp. 272–231.
 
17.
Słodkowska, B. and Kasiński, J.R. 2016. Uwarunkowania klimatyczne i środowiskowe powstania złóż bursztynu bałtyckiego [In:] Gazda L. ed. Lubelski bursztyn. Wyd. Miasta Kraków, pp. 21–41.
 
18.
State Geological Map of Ukraine, scale 1:200 000 (sheet of M-35-XV). [Online] Available at: www.geoappl.kiev.ua:8888/reports/rwservlet?us&report=kartogr&list=m35-15 [Accessed: 4 April 2017].
 
19.
Stiepanjuk, L. and Tutskij, W. 1999. Geologie und Mineralogie des Bernsteins von Klessow [In:] Kosmowska-Ceranowicz, B. and Paner, H. ed. Investigation into Amber. Gdańsk: Muzeum Archeologiczne w Gdańsku, pp. 53–60.
 
20.
Swamy, V. and Muddle, B.C. 2006. Size-dependent modifications of the Raman spectrum of rutile TiO2. Applied Physics Letters 89.
 
21.
Velde, B. and Odin, G.S. 1975. Further information related to the origin of glauconite. Clays and Clay Minerals 23, pp. 376–381.
 
22.
Zinkernagel, U. 1978. Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentary Geology 8.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top