Ultramafic and mafic rocks found in the near vicinity of mariupolites within the alkaline Oktiabrski Massif (SE Ukraine) – preliminary investigations
 
More details
Hide details
1
AGH Akademia Górniczo-Hutnicza, Kraków
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2016;32(2):63-77
 
KEYWORDS
ABSTRACT
The preliminary results of the mineralogical and geochemical investigations of ultramafic (peridotite and pyroxenite) and mafic (olivine gabbro) rocks from the Mazurovski Field of the Oktiabrski Massif in South-eastern Ukraine are presented in this paper. Peridotite is mainly composed of olivine (forsterite), pyroxene (diallage), plagioclase (labradorite) and ore minerals such as magnetite, ilmenite and pyrite. Antigorite and talk are secondary components. Diallage with subordinate plagioclase, olivine and Fe compounds (oxides/sulphides) are found in pyroxenite. Gabro is made of two generations of plagioclase, diallage, olivine, biotite and amphiboles (hornblende and actinolite). Chlorite, talk and ore minerals (ilmenite, pyrite, Fe oxides/hydroxides) occur as its subordinate components. On the basis of their mineral composition peridotite was classified as wehrlite, pyroxenite as clinopyroxenite, whereas the mafic rocks are represented by olivine gabbro. The mafic rocks are most likely products orginating from calc-alkaline magma. Owing to the fact that chromite was not identified in periodite, it is very probable that this rock is loco-temperature differentation product of ultramorfic rocks. The ultrabasic rocks and enriched with Al2O3, CaO and Fe and complethy impoverished of REES and alkalis. Only one olivine gabbro shows some amounts of REE s (0.096 wt.% REE s with the distinct predominance of LREE over HREE ) and alkalis (2.89–4.0 wt.% Na2O + K2O), which are surely genetically associated with alkaline rocks occurring in the near vicinity of the ultramafic and mafic rocks of the Oktiabrski Massif. The enrichment of gabbro in REEs and alkalis most probably proceeded post-magmatic activity.
METADATA IN OTHER LANGUAGES:
Polish
Skały ultrazasadowe i zasadowe z otoczenia mariupolitów występujących w alkalicznym Masywie Oktiabrskim (SE Ukraina) – badania wstępne
perydotyt, piroksenit, gabro, masyw Oktiabrski, Ukraina
Treścią pracy są wyniki badań mineralogiczno-geochemicznych próbek skał ultrazasadowych (perydotyt, piroksenit) i zasadowych (gabra oliwinowe) pobranych z bezpośredniego kontaktu z utworami alkalicznymi pochodzącymi z Pola Mazurowskiego Masywu Oktiabrskiego położonego nad morzem Azowskim (południowo-wschodnia Ukraina). Na podstawie składu mineralnego perydotyt został zaklasyfikowany jako wehrlit, a piroksenit jako klinopiroksenit oliwinowy. Omawiane skały odznaczają się znaczną zawartością, Fe, Mg, Ca, Ti oraz zubożeniem w P, alkalia (przewaga Na nad K) i REE. Spośród badanych skał gabro oliwinowe charakteryzuje się największym udziałem REE , w tym La, Ce, Nd, Y, Sm i Th oraz najwyższymi zawartościami alkaliów. Ten typ gabra wykazuje bliskie genetyczne spowinowacenie ze skałami alkalicznymi, występującymi w ich otoczeniu.
 
REFERENCES (26)
1.
Bodinier, J.-L. i Godard, M. 2014. Orogenic, Ophiolitic, and Abyssal Peridotites. In Carlson R.W. ed. The mantle and CoreTreatise on Geochemistry 3, Elsevier, s. 103–167.
 
2.
Donskoy, A.N. 1982. The nepheline complex of alkaline Oktiabrski Massif. Akademia Nauk Ukraińskiego SSR, Kijów, 150 s. (in Ukrainian).
 
3.
Dumańska-Słowik i in. 2011a – Dumańska-Słowik, M., Baranov, P., Heflik, W ., Natkaniec-Nowak, L ., Shevchenko, S . i Tsotsko, L .I. 2011a. Mariupolite from the Oktyabrsky Massif (SE Ukraine) – a less known rock in the gemstone trade. Zeitschrift Deutsche Gemmologische Gesselschaft 60/1–2, s. 37–48.
 
4.
Dumańska-Słowik i in. 2011b – Dumańska-Słowik, M., Sikorska, M. i Heflik, W . 2011b. Dissolved-recrystallized zircon from mariupolite in the Mariupol Massif, Priazovje (SE Ukraine). Acta Geologica Polonica 61, 3, s. 277–288.
 
5.
Dumańska-Słowik i in. 2012 – Dumańska-Słowik, M., Budzyń, B., Heflik W . i Sikorska, M., 2012. Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine). Acta Geologica Polonica 62(2), s. 247–265.
 
6.
Dumańska-Słowik i in. 2014 – Dumańska-Słowik, M., Pieczka, A., Tempesta, G., Olejniczak, Z. i Heflik, W ., 2014. ‘Silicified’ pyrochlore from nepheline syenite (mariupolite) of the Mariupol Massif, SE Ukraine: A new insight into the role of silicon in the pyrochlore structure. American Mineralogist 99, s. 2008–2018.
 
7.
Dumańska-Słowik i in. 2015 – Dumańska-Słowik, M., Wesełucha-Birczynska, A. i Pieczka, A. 2015. Micas from mariupolite of the Oktiabrski massif (SE Ukraine): An insight into the host rock evolution – Geochemical data supported by Raman microspectroscopy. Spectrochimica Acta, part A 137, s. 817–826.
 
8.
Dumańska-Słowik i in. 2016 – Dumańska-Słowik, M., Pieczka, A., Heflik, W . i Sikorska, M. 2016. Cancrinite from nepheline syenite (mariupolite) of the Oktiabrski massif, SE Ukraine, and its growth history. Spectrochimica Acta, part A 157, s. 211–219.
 
9.
Kourim i in. 2014 – Kourim, F ., Bodinier, J.L., Alard, O ., Bendaoud, A., Vauchez, A. i Dautria, J.M. 2014. Nature And Evolution of the Lithospheric Mantle Beneath The Hoggar Swell (Algeria): A Record From Mantle Xenoliths. Journal of Petrology 55(11), s. 2249–2280.
 
10.
Kravchenko, G.L. i Fomin A.B. 1973. The geochemical characteristics of ultrabasites from alkaline Maiupol Massif. Akademiyi Nauk Ukrayins’kayi RSR Seriya B: Geologichni i Khimichni ta Biologichni Nauk 4, s. 299–302 (in Ukrainian).
 
11.
Krivdik, S .G. i Tkachuk, V.I. 1998. Geochemical and petrological characterization of the rocks from the alkaline Oktiabrski Massif (Ukraine). Geochimija 4, s. 362–371 (in Ukrainian).
 
12.
Krivdik i in. 2007 – Krivdik, S .G., Nivin, V.A., Kul’chitskaya, A.A., Voznak, D.K., Kalinichenko, A.M., Zagnitko, V.N. i Dubyna, A.V. 2007. Hydrocarbons and other volatile components in alkaline rocks from the Ukrainian Shield and Kola Penisula. Geochemistry International 45(3), s. 270–294.
 
13.
Krivdik i in. 2010 – Krivdik, S .G., Shumlyanskyy, L . i Strekozov, S . 2010. Field trip guide. Oktyabrski Massif. Proceedings. Alkaline Rocks: petrology, mineralogy and geochemistry. Konferencja dedykowana pamięci J.A. Morozewicza, 19–21.09.2010, Kijów, s. 80–93. [Online] Dostępne w: http://www.ptmin.pl/alkalinero... [Dostęp: 10.04.2016].
 
14.
Mandal i in. 2012 – Mandal, A., Ray, A., Debnath, M. i Paul. S .P. 2012. Petrology, geochemistry of hornblende gabbro and associated dolerite dyke of Paharpur, Puruliya, West Bengal: I mpication for petrogenetic processes and tectonic setting. Journal of Earth System Science 121(3), s. 793–812.
 
15.
Morozewicz, J. 1902. Über Mariupolit, ein extremes Glied der Elaeolithsyenite. Tschermaks Mineralogische und Petrographische Mitteilungen 21, s. 238–246 (in German).
 
16.
Morozewicz, J. 1929. Mariupolit i jego krewniaki. Prace Polskiego Instytutu Geologicznego 2(3), 130 s.
 
17.
Pirajno, F . 2015. Intracontinental anorogenic alkaline magmatism and carbonatites associated mineral systems and the mantle plume connection. Gondwana Research 27, s. 1181–1216.
 
18.
Saranczina, G.M. i Szinkariev, N .F. 1973. Petrology of magmatic and metamorphic deposits. Nedra, 391 s. (in Russian).
 
19.
Schönenbergeri in. 2006 – Schönenberger, J., Marks, M., Wagner, T. i Markl, G. 2006. Fluid-rock interaction in autholitsof agpaitic nepheline syenites in the Ilimaussaq untrusion. South Greenland. Lithos 91, s. 331–351.
 
20.
Shpilevoy, L .V. i Shpilevoy, K.L. 2006. History of opening and development of Mariupolskoye zircon mine. Razvedka i Okhrana Nedr 4, s. 37–42 (in Ukrainian).
 
21.
Sørensen, H. 1992. Agpaitic neheline syenites: a potential source of rare elements. Appl. Geochem. 7, s. 417–427.
 
22.
Streckeisen, A.L. 1973. Classification and Nomenclature of Plutonic Rocks. Recommendations of the IU GS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau. Internationale Zeitschrift fur Geologie, 63, s. 773–785.
 
23.
Sun, S . i Mc Donough, W .F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds. A. D. S aunders and M. J. Norry). Geol. Soc. London vol. 42, s. 313–345, L ondon.
 
24.
Sviridov, V.V. 1973. The statistical geochemical investigations within the rocks from the Oktiabrski Massif‘s (Priazovie). Izvestiya Vysshikh Uchebnykh Zavedeniy. Geologiya i Razvedka, 5, s. 60–66 (in Ukrainian).
 
25.
Volkova, T.P. 2000. The genesis and ore mineralization of alkaline rocks from the Oktiabrski Massif. Sbornik nauchnykh trudov, 4, s. 9–10 (in Ukrainian).
 
26.
Volkova, T.P. 2001. The productivity criterion of REE and ore mineralization within rocks of the Oktiabrski Massif. Naukovi praci DonDTU, 36, s. 63–69 (in Ukrainian).
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top