Extraction of titanium from Ti-doped seaside magnetite concentrate in HCl media
More details
Hide details
Marmara University
Submission date: 2021-08-05
Final revision date: 2021-10-02
Acceptance date: 2021-10-26
Publication date: 2021-12-22
Corresponding author
Elif Uzun Kart   

Marmara University
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(4):79–96
The purpose of the present study was to extract high added value titanium from Ti-doped Seaside Magnetite Concentrated (Ti-SMC), which has a high potential reserve for Ti-Fe with 4–6% Ti, 50–52% Fe, 1–2% Al, and 1–2% Mg content by applying innovative, economical, environmentally friendly methods. Agitaion HCl leaching was applied to the Ti-SMC sample at different leaching temperatures (25–50–75–90°C), at acid concentrations (8–10–12 N), and leaching times (30–60–120–240 min) in atmospheric conditions. After the leaching experiments under the indicated conditions, the optimization of the leaching experiments was determined with Ti% recovery that dissoluted by elemental analysis, and the titanium recovery values reached the maximum value with increased leaching time at 50°C and 10 N HCl acid concentration; and 65% Ti was recovered in 30 minutes, 67% in 60 minutes, 74% in 120 minutes, and 82% Ti in 240 minutes. For Ti-SMC, leaching was carried out at 50°C leaching temperature and at 10 N acid concentration for 480 minutes, and a 92% Ti extraction value was achieved. According to the extraction results of all leaching experiments, the leaching temperature of 50°C, the acid concentration of 10 N, and the leaching time of 480 minutes were determined as the optimum conditions. In this study, it was emphasized that this resource is a potential reserve, which has not been used as a source before, with 92% Ti extraction with atmospheric acid leaching, which is an environmentally friendly method, consuming less energy than Ti-SMC, which is difficult and expensive to extract with traditional methods.
The funding of this study with Marmara University Bapko Project iD: FEN-K-170118-0009.
Ekstrakcja tytanu z nadmorskiego koncentratu magnetytu domieszkowanego tytanem w środowisku HCl
nadmorski koncentrat magnetytu zawierający Ti, ługowanie w warunkach atmosferycznych HCl, ekstrakcja tytanu
Celem badań była ekstrakcja tytanu z nadmorskiego koncentratu magnetytu (Ti-SMC – Ti-doped Seaside Magnetite Concentrated), charakteryzującego się znacznym potencjałem rudy Ti-Fe zawierającej 4–6% Ti, 50–52% Fe, 1–2% Al oraz 1–2% Mg, dzięki zastosowaniu innowacyjnych, ekonomicznych i przyjaznych dla środowiska metod ługowania. Ługowanie kwasem solnym HCl z mieszaniem zastosowano do próbek Ti-SMC w różnych temperaturach ługowania (25–50–75–90°C), przy stężeniach kwasu (8–10–12 N) i czasach ługowania (30–60–120–240 min) w warunkach atmosferycznych. Następnie dokonano optymalizacji eksperymentów ługowania z odzyskiem Ti%. Maksymalne wartości odzysku tytanu wystąpiły przy zwiększonym czasie ługowania w temperaturze 50°C i stężeniu kwasu solnego HCl 10 N; 65% Ti odzyskano w ciągu 30 min, 67% – w 60 minut, 74% – w 120 minut, a 82% – w 240 minut. W przypadku Ti-SMC ługowanie prowadzono w temperaturze 50°C i przy stężeniu kwasu 10 N przez 480 minut i otrzymano wartość ekstrakcji 92% Ti. Zgodnie z wynikami ekstrakcji we wszystkich eksperymentach ługowania jako optymalne warunki określono: temperaturę ługowania 50°C, stężenie kwasu 10 N i czas ługowania 480 minut. W pracy podkreślono, że surowiec ten stanowi potencjalną rezerwą, wcześniej niewykorzystywaną. Ekstrakcja 92% Ti z ługowaniem kwasem solnym w warunkach atmosferycznych jest metodą przyjazną dla środowiska, zużywającą mniej energii niż Ti-SMC, która jest trudna i droga do ekstrakcji tradycyjnymi metodami.
Barksdale, J. 1966. Titanium: its occurrence, chemistry, and technology. 2nd ed. Ronald Press.
Binnemans, K. and Jones, P.T. 2017. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. Journal of Sustainable Metallurgy 3, pp. 570–600. DOI: 10.1007/s40831-017-0128-2.
Das et al. 2013 – Das, G.K., Pranolo, Y., Zhu, Z. and Cheng, C.Y. 2013. Leaching of ilmenite ores by acidic chloride solutions. Hydrometallurgy 133, pp. 94–99. DOI: 10.1016/j.hydromet.2012.12.006.
El-Hazek et al. 2007 – El-Hazek, N., Lasheen, T.A., El-Sheikh, R. and Zaki, S.A. 2007. Hydrometallurgical criteria for TiO2 leaching from Rosetta ilmenite by hydrochloric acid. Hydrometallurgy 87, pp. 45–50. DOI: 10.1016/j.hydromet.2007.01.003.
Hamor, L. 1986. Titanium dioxide manufacture, a world source of ilmenite, rutile, monazite and zircon. [In:] Titanium Dioxide Manufacture, a World Source of Ilmenite, Rutile, Monazite and Zircon. pp. 143–146.
Hu et al. 2017 – Hu, T., Sun, T., Kou, J., Geng, C., Wang, X. and Chen, C. 2017. Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. International Journal of Mineral Processing 165, pp. 28–33. DOI: 10.1016/j.minpro.2017.06.003.
Jabit, N.A. and Senanayake, G. 2018. Characterization and Leaching Kinetics of Ilmenite in Hydrochloric Acid solution for Titanium Dioxide Production. Journal of Physics: Conference Series 1082. DOI: 10.1088/1742-6596/1082/1/012089.
Jackson, J.S. and Wadsworth, M.E. 1976. A kinetic study of dissolution of Allard Lake ilmenite in hydrochloric acid. In Light Metals 1.
Jena et al. 1995 – Jena, B.C., Dresler, W. and Reilly, I.G. 1995. Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada. Minerals Engineering 8, pp. 159–168. DOI: 10.1016/0892-6875(94)00110-X.
Kart, E.U. 2021. Evaluation of sulphation baking and autogenous leaching behaviour of Turkish metallurgical slag flotation tailings. Physicochemical Problems of Mineral Processing 57, pp. 107–116. DOI: 10.37190/ppmp/138839.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2021. The leaching of mercury from hard coal and extractive waste in the acidic medium. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(2), pp. 163–178. DOI: 10.24425/gsm.2021.137567.
Liet al. 2008 – Li, C., Liang, B. and Wang, H.Y. 2008. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite. Hydrometallurgy 91, pp. 121–129. DOI: 10.1016/j.hydromet.2007.11.013.
Luo et al. 2021 – Luo, Y., Che, X., Wang, H., Zheng, Q. and Wang, L. 2021. Selective extraction of vanadium from vanadium-titanium magnetite concentrates by non-salt roasting of pellets-H2SO4 leaching process. Physicochemical Problems of Mineral Processing 57, pp. 36–47. DOI: 10.37190/ppmp/138281.
Mahmoud et al. 2004 – Mahmoud, M.H.H., Afifi, A.A.I. and Ibrahim, I.A. 2004. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile. Hydrometallurgy 73, pp. 99–109. DOI: 10.1016/j.hydromet.2003.08.001.
Minkler, W.W. and Baroch, E.F. 1981. The production of titanium, zirconium and hafnium. Metallurgical treatises.
Olanipekun, E. 1999. Kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid. Hydrometallurgy 53, pp. 1–10. DOI: 10.1016/S0304-386X(99)00028-6.
Rötzer, N. and Schmidt, M. 2018. Decreasing metal ore grades-Is the fear of resource depletion justified? Resources 7. DOI: 10.3390/resources7040088.
Sarker et al. 2006 – Sarker, M.K., Rashid, A.K.M.B. and Kurny, A.S.W. 2006. Kinetics of leaching of oxidized and reduced ilmenite in dilute hydrochloric acid solutions. International Journal of Mineral Processing 80, pp. 223–228. DOI: 10.1016/j.minpro.2006.04.005.
Sasikumar et al. 2007 – Sasikumar, C., Rao, D.S., Srikanth, S., Mukhopadhyay, N.K. and Mehrotra, S.P. 2007. Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy 88, pp. 154–169. DOI: 10.1016/j.hydromet.2007.03.013.
Spooren et al. 2020 – Spooren, J., Binnemans, K., Björkmalm, J., Breemersch, K., Dams, Y., Folens, K., González-Moya, M., Horckmans, L., Komnitsas, K., Kurylak, W., Lopez, M., Mäkinen, J., Onisei, S., Oorts, K., Peys, A., Pietek, G., Pontikes, Y., Snellings, R., Tripiana, M., Varia, J., Willquist, K., Yurramendi, L. and Kinnunen, P. 2020. Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling 160, 104919. DOI: 10.1016/j.resconrec.2020.104919.
Sun et al. 2015 – Sun, Y., Zheng, H., Dong, Y., Jiang, X., Shen, Y. and Shen, F. 2015. Melting and separation behavior of slag and metal phases in metallized pellets obtained from the direct-reduction process of vanadium-bearing titanomagnetite. International Journal of Mineral Processing 142, pp. 119–124. DOI: 10.1016/j.minpro.2015.04.002.
Tsuchida et al. 1982 – Tsuchida, H., Narita, E., Takeuchi, H., Adachi, M. and Okabe, T. 1982. Manufacture of high pure titanium (IV) oxide by chloride process. I kinetic study on leaching ilmenite ore in concentrated hydrochloric acid solution. Bulletin of the Chemical Society of Japan 55, pp. 1934–1938.
Uzun et al. 2016 – Uzun, E., Zengin, M. and Atỳlgan, Ý. 2016. Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching. Materiali in Tehnologije 50, pp. 395–401. DOI: 10.17222/mit.2015.091.
Van Dyk et al. 2002 – Van Dyk, J.P., Vegter, N.M. and Pistorius, P.C. 2002. Kinetics of ilmenite dissolution in hydrochloric acid. Hydrometallurgy 65, pp. 31–36. DOI: 10.1016/S0304-386X(02)00063-4.
Verhulst, D., Sabacky, B., Spitler, T. and Duyvesteyn, W. 2002. Tha Altair TiO2 pigment process and its extension into the field of nanomaterials. CIM Bulletin 95, pp. 89–94.
Zhang et al. 2011 – Zhang, W., Zhu, Z. and Cheng, C.Y. 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108, pp. 177–188. DOI: 10.1016/j.hydromet.2011.04.005.
Zhong et al. 2014 – Zhong, B., Xue, T., Zhao, L., Zhao, H., Qi, T. and Chen, W. 2014. Preparation of Ti-enriched slag from V-bearing titanomagnetite by two-stage hydrochloric acid leaching route. Separation and Purification Technology 137, pp. 59–65. DOI: 10.1016/j.seppur.2014.09.021.