ORIGINAL PAPER
Game-theory based reasoning as a tool for selecting exploitation sections taking into account natural risk hazards on the example of preparatory works in a copper ore mine
More details
Hide details
1
AGH University of Krakow
2
KGHM Polska Miedź SA, O/ZG Polkowice-Sieroszowice
These authors had equal contribution to this work
Submission date: 2024-10-22
Final revision date: 2025-01-27
Acceptance date: 2025-04-08
Publication date: 2025-06-10
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(2):5-30
KEYWORDS
TOPICS
ABSTRACT
The paper presents non-standard decision-making methods for selecting exploitation parcels, based on the natural hazards risk assessment in a copper ore mine. Based on diversified quality characteristics of the ore in four preparatory sections, the possible revenues were estimated using the NSR formula. The obtained revenues were compared with the probability of natural hazards occurring including gas outbursts, sudden inflows of water into the workings, outflow of water and/or sand water in the workings, disappearance or reduction of the deposit in the elevation zone, disappearance of the deposit in oxidized Rote Fäule zone, simultaneous disappearance of the deposit in the elevation zone and oxidized zone. It was assumed that a possible natural hazard would affect the level of income achieved, according to the probability of its occurrence and its type, and the theoretical decision-making model would explain and justify the selection of the safest exploitation sections. Utilizing the risk matrix, the possible effects of the emergence of hazards and their consequences from the standpoint of occupational safety and safety in terms of maintaining the continuity and profitability of mining operations were assessed qualitatively on a five-point scale. The quantitative measures obtained in this way were proposed as payoff amounts in two-player non-zero-sum games. The game solutions enabled to establish the hypothetical hierarchy of exploitation sections in relation to the above-mentioned safety criteria, indicating the optimal strategy for the exploitation front.
ACKNOWLEDGEMENTS
We would like to warmly thank the reviewers for their effort and thoughtful feedback on our manuscript. Constructive remarks have been very helpful and improved the quality of the paper.
FUNDING
This research and paper preparation was funded by AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection; subsidy number: 16.16.140.315.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Wnioskowanie teoriogrowe jako narzędzie wyboru parcel eksploatacyjnych z uwzględnieniem ryzyka wystąpienia zagrożeń naturalnych na przykładzie robót przygotowawczych w kopalni rud miedzi
ograniczanie ryzyka, zagrożenia naturalne w górnictwie, macierz ryzyka, gry dwuosobowe o sumie niezerowej, wypłata
W artykule zaproponowano niestandardowe metody decyzyjne wyboru parcel eksploatacyjnych w odniesieniu do oceny ryzyka wystąpienia zagrożeń naturalnych w kopalni rud miedzi. W oparciu o zróżnicowaną, realną charakterystykę jakościową rudy w czterech parcelach przygotowawczych, oszacowano możliwe do uzyskania przychody z wykorzystaniem formuły sprzedażnej NSR. Uzyskane przychody konfrontowano z prawdopodobieństwami wystąpienia zagrożeń naturalnych obejmujących: wyrzuty gazów, nagłe dopływy wody do wyrobisk, wypływ wody i/lub kurzawki w wyrobiskach, zanik lub redukcję złoża w strefie elewacji, zanik złoża w strefie utlenionej Rote Fäule, zanik złoża w strefie elewacji i utlenionej jednocześnie. Przyjęto, że możliwe zagrożenie wpływać będzie na poziom osiąganego przychodu, stosownie do prawdopodobieństwa wystąpienia i rodzaju zagrożenia, a teoretyczny model decyzyjny objaśniał i uzasadniał wybór najbezpieczniejszej parceli. W oparciu o macierze ryzyka oceniono jakościowo w pięciostopniowej skali możliwe skutki ujawnienia się zagrożeń oraz ich konsekwencje z punktu widzenia bezpieczeństwa pracy jak i bezpieczeństwa w kontekście zachowania ciągłości i opłacalności wydobycia. Uzyskane w ten sposób miary ilościowe zostały zaproponowane jako wielkości wypłat w dwuosobowych grach o sumie niezerowej. Rozwiązania gier umożliwiły hipotetyczną hierarchizację parcel eksploatacyjnych w odniesieniu do wspomnianych kryteriów bezpieczeństwa, wskazując na optymalny dobór parcel kierowanych do eksploatacji.
REFERENCES (79)
1.
Abbasi, S. 2018. Defining Safety Hazards and Risks in Mining Industry: A Case-Study in United States. Asian Journal of Applied Science and Technology (AJAST) 2, pp. 1071–1078.
2.
Adach-Pawelus et al. 2018 – Adach-Pawelus, K., Butra, J. and Pawelus, D. 2018. The issue of determining the size of main excavations protective pillars in deep underground copper mines. Archives of Mining Sciences 63(4), pp. 935–946, DOI: 10.24425/ams.2018.124985.
3.
Badri et al. 2013 – Badri, A., Nadeau, S. and Gbodossou, A. 2013. A new practical approach to risk management for underground mining project in Quebec. Journal of Loss Prevention in the Process Industries 26, pp. 1145–1158, DOI: 10.1016/j.jlp.2013.04.014.
4.
Bagherpour et al. 2015 – Bagherpour, R., Yarahmadi, R. and Khademian, A. 2015. Safety risk assessment of Iran’s underground coal mines based on preventive and preparative measures. Human and Ecological Risk Assessment: An International Journal 21(8), pp. 2223–2238, DOI: 10.1080/10807039.2015.1046418.
5.
Ball, D.J. and Watt, J. 2013. Further Thoughts on the Utility of Risk Matrices. Risk Analysis 33(11), pp. 2068–2078, DOI: 10.1111/risa.12057.
6.
Bieniasz et al. 2011 – Bieniasz, J., Wojnar, W., Sadowski, A. and Wrzosek, J. 2011. Convergence of large depth mining excavations in salt rock formations (Zaciskanie wyrobisk na dużych głębokościach w górotworze solnym). Geologia 37(2), pp. 207–214 (in Polish with English abstract).
7.
Błaszczyk, J.K. 1981. Palaeomorphology of Weissliegendes top as the control on facies variability in ore-bearing series of Lubin copper-field, southwestern Poland (Wpływ paleomorfologii stropu białego spągowca na zmienność facjalną serii złożowej w zagłębiu Lubińskim). Geologia Sudetica 16(1), pp. 195–217 (in Polish with English abstract).
8.
Bocheńska, T. 1984. Changes of hydrodynamic conditions in the complex of sub-quaternary strata in the Lubin-Głogów copper-bearing area (Zmiany warunków hydrodynamicznych w kompleksie utworów podczwartorzędowych lubińsko-głogowskiego okręgu miedziowego). Przegląd Geologiczny 32(1), pp. 26–31 (in Polish with English abstract).
9.
Bocheńska, T. and Bieniewski, J. 1978. Underground water inflow to the copper-mines of Fore- Sudetic monocline region (Dopływ wód podziemnych do kopalni rudy miedzi na Monoklinie Przedsudeckiej). Geologia Sudetica 13(2), pp. 133–141 (in Polish with English abstract).
10.
Bojarski et al. 1985 – Bojarski, L., Chandij, M. and Stasik, I. 1985. Gas potential of the Lubin-Głogów region (Gazonośność rejonu Lubin–Głogów). Przegląd Geologiczny 33(3), pp. 116–120 (in Polish with English abstract).
11.
Bradecki, W. and Dubiński, J. 2005. Effect of the restructuring of the polish coal-mining industry on the level of natural hazards. Archives of Mining Sciences 50(1), pp. 49–67.
12.
Bukowski, P. 2015. Evaluation of water hazard in hard coal mines in changing conditions of functioning of mining industry in Upper Silesian Coal Basin – USCB (Poland). Archives of Mining Sciences 60(2), pp. 455–475, DOI: 10.1515/amsc-2015-0030.
13.
Butra et al. 2007 – Butra, J., Bugajski, W., Piechota, S. and Gajoch, K. 2007. Horizontal opening and preparatory workings. [In]: Piestrzyński, A., Banaszak, A., Zalewska-Kuczmierczyk, M. (Eds.), Monograph of KGHM Polska Miedź S.A., Lubin: Wyd. KGHM CUPRUM, pp. 343–354 (in Polish).
14.
Carpignano et al. 1998 – Carpignano, A., Priotti, W. and Romagnoli, R. 1998. Risk analysis techniques applied to floating oil production in deepwater offshore environments. Proceedings of the Eighth International Offshore and Polar Engineering Conference Montreal, Canada.
15.
Cox, A. 2008. What’s Wrong with Risk Matrices? Risk Analysis 28, pp. 497–512, DOI: 10.1111/j.1539-6924.2008.01030.x.
16.
Dehghani, H. and Ataee-pour, M. 2012. Determination of the effect of operating cost uncertainty on mining project evaluation. Resources Policy 37 (1), pp. 109–117, DOI: 10.1016/j.resourpol.2011.11.001.
17.
Depowski, S. 1981. Gas and oil-bearing areas in Poland (Obszary gazonośne i roponośne Polski). Przegląd Geologiczny 29(5), pp. 209–217 (in Polish with English abstract).
18.
Domínguez et al. 2019 – Domínguez, C.R., Martínez, I. V., Piñón Peña, P.M. and Ochoa, A.R. 2019. Analysis and evaluation of risks in underground mining using the decision matrix risk-assessment (DMRA) technique, in Guanajuato, Mexico. Journal of Sustainable Mining 18, pp. 52–59, DOI: 10.1016/j.jsm.2019.01.001.
19.
Donoghue, A.M. 2004. Occupational health hazards in mining: an overview. Occupational Medicine 54, pp. 283–289, DOI: 10.1093/occmed/kqh072.
20.
Drenda, J. 2012. Analysis of climatic conditions in polish coal and copper ore mines (Ocena klimatycznych warunków pracy górników w polskich kopalniach węgla kamiennego i rudy miedzi). Górnictwo i Geologia 7(3), pp. 19–35 (in Polish with English abstract).
21.
Duda et al. 2023 – Duda, R., Bilkiewicz, E. and Becker, R. 2023. Hydrogen sulphide (H2S) migration in groundwater of the Zechstein strata in the Legnica-Głogów Copper Basin and its vicinity, SW Poland. Geological Quarterly 67(3), pp. 1–9, DOI: 10.7306/gq.1709.
22.
Eiter et al. 2016 – Eiter, B.M., Kosmoski, C.L. and Connor, B.P. 2016. Defining hazard from the mine worker’s perspective. Mining Engineering 68(11), pp. 50–54, DOI: 10.19150/me.6832.
23.
Elenge, M.M. and de Brouwer, Ch. 2011. Identification of hazards in the workplaces of artisanal mining in Katanga. International Journal of Occupational Medicine and Environmental Health 24(l), pp. 57–66, DOI: 10.2478/sl 3382-011-0012-4.
24.
Goldie, R. 2023. Net Smelter Returns (NSRs) and alternative measures of the value of polymetallic mineralization. Mineral Economics 37, pp. 55–64, DOI: 10.1007/s13563-023-00400-3.
25.
Goldie, R. and Tredger, P. 1991. Net Smelter Return models and their use in the exploration, evaluation and exploitation of polymetallic deposits. Geoscience Canada 18(4), pp. 159–171.
26.
Gul et al. 2019 – Gul, M., Ak, M.F. and Guneri, A.F. 2019. Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry. Journal of Safety Research 69, pp. 135–153, DOI: 10.1016/j.jsr.2019.03.005.
27.
Hao, M. and Nie, Y. 2022. Hazard identification, risk assessment and management of industrial system: Process safety in mining industry. Safety Science 154, DOI: 10.1016/j.ssci.2022.105863.
28.
Hu et al. 2019 – Hu, Y., Li, W., Liu, S., Wang, Q. and Wang, Z. 2019. Risk assessment of water inrush from aquifers underlying the Qiuji coal mine in China. Arabian Journal of Geosciences 12(3), DOI: 10.1007/s12517-019-4244-0.
29.
Iannacchione et al. 2008 – Iannacchione, A., Varley, F. and Brady, T. 2008. The application of major hazard risk assessment (MHRA) to eliminate multiple fatality occurrences in the US minerals industry. Information Circular 9508. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Spokane, USA, 132 pp.
30.
Imam et al. 2023 – Imam, M., Baïna, K., Tabii, Y., Ressami, El M., Adlaoui, Y., Benzakour, I. and Abdelwahed, El H. 2023. The Future of Mine Safety: A Comprehensive Review of Anti-Collision Systems Based on Computer Vision in Underground Mines. Sensors 23, DOI: 10.3390/s23094294.
31.
Kaczmarek et al. 2017 – Kaczmarek, W., Dudek, M., Golda, K. and Wasilewska-Błaszczyk, M. 2017. Characteristics of low mineralization zones in the central part of the copper ore deposit in the Fore-Sudetic Monocline (Charakterystyka stref bezzłożowych w centralnej części złoża rud miedzi na monoklinie przedsudeckiej). Zeszyty Naukowe IGSMiE PAN 100, pp. 79–94 (in Polish with English abstract).
32.
KGHM 2021. Guidelines for the identification of gas hazards and potential gas-geodynamic phenomena and for conducting mining works under conditions of the possibility of hazards occurring (Wytyczne dotyczące rozpoznawania zagrożeń gazowych i potencjalnych zjawisk gazogeodynamicznych oraz prowadzenia robót górniczych w warunkach możliwości wystąpienia zagrożeń). KGHM Polska Miedź S.A., Lubin, 49 pp. (in Polish, unpublished work).
33.
Kijewski et al. 2012 – Kijewski, P., Kubiak, J. and Gola, S. 2012. Hydrogen sulfide – a new threat in copper ore mining (Siarkowodór – nowe zagrożenie w górnictwie rud miedzi). Zeszyty Naukowe IGSMiE PAN 83, pp. 83–95 (in Polish with English abstract).
34.
Kłeczek et al. 2016 – Kłeczek, Z., Niedojadło, Z., Popiołek, E., Skobliński, W., Sopata, P., Stoch, T., Wójcik, A. and Zeljaś, D. 2016. Mining hazards analysis with simultaneous mining copper ores and salt deposits in LGOM (Legnica-Głogów copper belt) mines with regard to dynamic influences. Archives of Mining Sciences 61(3), pp. 553–570, DOI: 10.1515/amsc-2016-0040.
35.
Kleczkowski et al. 2007 – Kleczkowski, A.S., Downorowicz, S., Zimny, W. and Becker, R. 2007. Hydrogeology of the copper deposit series (Hydrogeologia serii złożowej). [In]: Piestrzyński, A., Banaszak, A., Zalewska-Kuczmierczyk, M. (eds.), Monograph of KGHM Polska Miedź S.A., Lubin: Wyd. KGHM CUPRUM, pp. 133–142 (in Polish).
36.
Kondratowicz, G. 2022. Research and assessment of the gas and geodynamic hazard in the mines of KGHM Polska Miedź S.A. Indicators for the assessment of a potential gas geodynamic hazard in terms of forecasting (Badania i ocena stanu zagrożenia gazogeodynamicznego w kopalniach KGHM Polska Miedź S.A. Wskaźniki do oceny stanu potencjalnego zagrożenia gazogeodynamicznego w aspekcie prognozowania). CUPRUM – Czasopismo Naukowo-Techniczne Górnictwa Rud 101, pp. 5–20 (in Polish with English abstract).
37.
Korshunov et al. 2020 – Korshunov, G.I., Kabanov, E.I. and Cehlár, M. 2020. Occupational risk management in a mining enterprise with the aid of an improved matrix method for risk assessment. Acta Montanistica Slovaca 25(3), pp. 289–301, DOI: 10.46544/AMS.v25i3.3.
38.
Kowalik, S. 1998. Making use of game theory determining safety (Wykorzystanie teorii gier o sumie zerowej do podejmowania decyzji w górnictwie). Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo 210, Gliwice, pp. 121–132 (in Polish with English abstract).
39.
Kowalik, S. 1997. The utilisation of the theory of games in decision making in mining (Wykorzystanie teorii gier do podejmowania decyzji w górnictwie). Gliwice: Wyd. PŚ, 110 pp. (in Polish with English abstract).
40.
Kowalik, S. 2007. Game theory with mining applications (Teoria gier z zastosowaniami górniczymi) Gliwice: Wyd. PŚ, 243 pp. (in Polish).
41.
Król, K. and Dzik, G. 2020. Gas-geodynamic hazard and methods of cope it in copper ore mines in the light of the work of the WUG president’s team for the analysis of gas-geodynamic phenomena at KGHM Polska Miedź S.A. (Zagrożenie gazogeodynamiczne i sposoby jego zwalczania w kopalniach rud miedzi w świetle prac Zespołu doradczo-opiniodawczego ds. analizy zjawisk gazogeodynamicznych w KGHM Polska Miedź S.A.). Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 5, pp. 2–9 (in Polish with English abstract).
42.
Lapshin et al. 2020 – Lapshin, Y., Blyuss, B., Dziuba, S. and Tatarko, L. 2020. The choice of mining development strategy based on the improved Bayes criterion. E3S Web of Conferences RMGET 2020, 168, pp. 1–7, DOI: 10.1051/e3sconf/202016800053.
43.
Leyton-Brown, K. and Shoham, Y. 2008. Essentials of Game Theory: A Concise, Multidisciplinary Introduction, e-book, Morgan and Claypool Publisher, San Rafael.
44.
Li et al. 2022 – Li, H., Chen, L., Tian, F., Zhao, L. and Tian, S. 2022. Comprehensive evaluation model of coal mine safety under the combination of game theory and TOPSIS. Hindawi Mathematical Problems in Engineering, DOI: 10.1155/2022/5623282.
45.
Mahdevari et al. 2014 – Mahdevari, S., Shahriar, K. and Esfahanipour, A. 2014. Human health and safety risks management in underground coal mines using fuzzy TOPSIS. Science of the Total Environment 488–489, pp. 85–99, DOI: 10.1016/j.scitotenv.2014.04.076.
46.
Matuszewski, K. 2009. Causes of occupational accidents in mining in the aspect of prevention (Przyczyny wypadków przy pracy w górnictwie w aspekcie profilaktyki). Bezpieczeństwo Pracy. Nauka i Praktyka 2, pp. 22–25 (in Polish with English abstract).
47.
Md-Nora et al. 2008 – Md-Nora, Z., Kecojevica, V., Komljenovic, D. and Groves, W. 2008. Risk assessment for loaderand dozer-related fatal incidents in U.S. mining. International Journal of Injury Control and Safety Promotion 15(2), pp. 65–75, DOI: 10.1080/17457300801977261.
48.
Nash, J.F. 1951. Non-Cooperative Games. The Annals of Mathematics, Second Series 54(2), pp. 286–295, DOI: 10.2307/1969529.
49.
NSWDPI, 1997. Risk management handbook for the mining industry. How to conduct a risk assessment of mine operations and equipment and how to manage the risks. MDG 1010. New South Wales Department of Primary Industries, Sydney, 96 p.
50.
Ogrodnik et al. 2017 – Ogrodnik, R., Burtan, Z. and Kapusta, M. 2017. Natural and technical hazards affecting the status of safety in the polish open-pit mines (Zagrożenia naturalne i techniczne wpływające na stan bezpieczeństwa pracy w polskich kopalniach odkrywkowych). Modern Management Review XXII(2), pp. 99–115, DOI: 10.7862/rz.2017.mmr.19 (in Polish with English abstract).
51.
Onder et al. 2011 – Onder, S., Suner, N. and Onder, M. 2011. Investigation of occupational accident occurred at mining sector by using risk assessment decision matrix. 22nd International Mining Congress and Exhibition of Turkey, 11–13 May 2011, Ankara, pp. 399–406.
52.
Ordinance 2013. Ordinance of the Minister of the Environment on natural hazards in mining plants. Journal of Laws of 2013, item 230 pp. (in Polish).
53.
Oszczepalski, S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita 34, pp. 599–613, DOI: 10.1007/s001260050222.
54.
Özfirat et al. 2023 – Özfirat, M.K., Özfirat, P.M. and Yetkin, M.E. 2023. Risk management for surface plants in mines using risk matrix and bowtie analysis. Acta Montanistica Slovaca 28(1), pp. 47–58, DOI: 10.46544/AMS.v28i1.05.
55.
Özfirat et al. 2017 – Özfirat, M.K., Özkan, E., Kahraman, B., Sengun, B. and Yetkin, M.E. 2017. Integration of risk matrix and event tree analysis: a natural stone plant case. Sadhana 42(10), pp. 1741–1749, DOI: 10.1007/s12046-017-0725-6.
56.
Paithankar, A. 2010–2011. Bachelor of Technology thesis. Hazard identification and risk analysis in mining industry. National Institute of Technology, Rourkela, India, 74 pp.
57.
Petrović et al. 2014 – Petrović, D.V., Tanasijević, M., Milić, V., Lilić, N., Stojadinović, S. and Svrkota, I. 2014. Risk assessment model of mining equipment failure based on fuzzy logic. Expert Systems with Applications 41, pp. 8157–8164, DOI: 10.1016/j.eswa.2014.06.042.
58.
PGiG 2011. Act of 9 June 2011 Geological and Mining Law (Prawo geologiczne i górnicze). Journal of Laws of 2011, No. 163, item 981 p. (in Polish).
59.
Piechota, S. 2007. Development of copper ore mining methods in LGOM region (Rozwój systemów eksploatacji złoża rud miedzi w rejonie LGOM). Biuletyn Państwowego Instytutu Geologicznego 423, pp. 23–42 (in Polish with English abstract).
60.
Pieczonka et al. 2008 – Pieczonka, J., Piestrzyński, A., Mucha, J., Głuszek, A., Kotarba, M. and Więcław, D. 2008. The red-bed-type precious metal deposit in the Sieroszowice-Polkowice copper mining district, SW Poland. Annales Societatis Geologorum Poloniae 78, pp. 151–280.
61.
Piestrzyński et al. 2002 – Piestrzyński, A., Pieczonka, J. and Głuszek, A. 2002. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineralium Deposita 37, pp. 512–528, DOI: 10.1007/s00126-002-0256-9.
62.
Porter et al. 2019 – Porter, M., Lato, M., Quinn, P. and Whittall, J. 2019. Challenges with use of risk matrices for geohazard risk management for resource development projects. [In:] Wesseloo J. (ed.), MGR Proceedings of the First International Conference on Mining Geomechanical Risk, Australian Centre for Geomechanics, Perth, pp. 71–84, DOI: 10.36487/ACG_rep/1905_01_Porter.
63.
Poszytek et al. 2018 – Poszytek, A., Dudek, L. and Rożek, R. 2018. Presence of natural gas in basinal facies of the zechstein limestone in a copper mine in SW Poland. Journal of Petroleum Geology 41(1), pp. 67–83, DOI: 10.1111/jpg.12693.
64.
Rydzewski, A. 1978. Oxidized facies of the Zechstein copper-bearing shale in the area of the Fore-Sudetic Monocline (Facja utleniona cechsztyńskiego łupku miedzionośnego na obszarze monokliny przedsudeckiej). Przegląd Geologiczny 26(3), pp. 102–107 (in Polish with English abstract).
65.
Samantra et al. 2017 – Samantra, Ch., Datta, S. and Mahapatra, S.S., 2017. Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine. International Journal of Injury Control and Safety Promotion 24(3), pp. 311–327, DOI: 10.1080/17457300.2016.1178298.
66.
Sikora, M. and Wróbel, Ł. 2010. Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines. Archives of Mining Sciences 55(1), pp. 91–114.
67.
Słowakiewicz, M. and Panajew, P. 2022. Organic geochemistry and origin of bitumen seeps in the Upper Permian (Zechstein) bituminous anhydrite in a Cu–Ag mine in western Poland. International Journal of Earth Sciences 111(4), pp. 1373–1394, DOI: 10.1007/s00531-022-02189-y.
68.
Szidarovszky et al. 1984 – Szidarovszky, F., Duckstein, L. and Boqardi, I. 1984. Multiobjective management of mining under water hazard by game theory. European Journal of Operational Research 15(1), 251– 258, DOI: 10.1016/0377-2217(84)90215-7.
69.
Tubis et al. 1984 – Tubis, A., Werbińska-Wojciechowska, S. and Wróblewski, A. 2020. Risk Assessment Methods in Mining Industry – A Systematic Review. Applied Sciences 10, DOI: 10.3390/app10155172.
70.
Ullah et al. 2018 – Ullah, M.F., Alamri, A.M., Mehmood, K., Akram, M.S., Rehman, F., Rehman, S.U. and Riaz, O. 2018. Coal mining trends, approaches, and safety hazards: a brief review. Arabian Journal of Geosciences 11(651), DOI: 10.1007/s12517-018-3977-5.
71.
Vingård, E. and Elgstrand, K. (eds.) 2013. Safety and health in mining. Occupational Safety and Health in Mining Anthology on the situation in 16 mining countries. University of Gothenburg 47(2), pp. 1–179.
72.
Wellmer et al. 2008 – Wellmer, F.W., Dalheimer, M. and Wagner, M. 2008. Economic Evaluations in Exploration 2nd edition. Springer Berlin, Heidelberg. DOI: 10.1007/978-3-540-73559-5.
73.
Wills, B.A. and Napier-Munn, T. (eds.) 2006. Mineral processing technology. An introduction to the practical aspects of ore treatment and mineral recovery, 7th edition. Elsevier Science and Technology Book, Butterworth-Heinemann Ltd, Oxford.
74.
Wowczuk, G. and Juszyński, D. 2019. The effect of outburst phenomena on the roof fall hazard in KGHM Polska Miedź S.A. mining plants (Wpływ zjawisk gazogeodynamicznych na zagrożenie zawałami w zakładach górniczych KGHM Polska Miedz S.A.). Przegląd Górniczy 75(3), pp. 9–14 (in Polish).
75.
WUG 2020. Assessment of the state of occupational safety, mine rescue and general safety in connection with mining-geological activities in 2019 (comparison from 2015). Katowice: WUG, 61 pp. (in Polish).
76.
WUG 2023. Assessment of the state of occupational safety, mine rescue and general safety in connection with mining-geological activities in 2022 (comparison from 2018). Katowice: WUG, 75 pp. (in Polish).
77.
Yildiz, T.D. 2021. Loss of profits occurring due to the halting of mining operations arising from occupational accidents or reasons related to legislation. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(4), pp. 153–176, DOI: 10.24425/gsm.2021.139739.
78.
Zgrzebski et al. 2022 – Zgrzebski, P., Laskowski, M. and Danis, M. 2022. Emergency management on the example of an underground copper ore mine (Zarządzanie podczas sytuacji awaryjnych na przykładzie podziemnej kopalni rudy miedzi). Inżynieria Mineralna 1, pp. 79–86, DOI: 10.29227/IM-2022-01-10 (in Polish with English abstract).
79.
Zhou et al. 2018 – Zhou, L., Cao, Q., Yu, K., Wang, L. and Wang, H. 2018. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines. International Journal of Environmental Research and Public Health 15(5), DOI: 10.3390/ijerph15050868.