REVIEW PAPER
Hydrophobization of diatomaceous earth used to remove oil pollutants
More details
Hide details
1
AGH University of Science and Technology, Kraków, Poland
Submission date: 2022-12-20
Final revision date: 2023-04-24
Acceptance date: 2023-04-25
Publication date: 2023-06-12
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(2):209-222
KEYWORDS
TOPICS
ABSTRACT
Contamination of the natural environment with petroleum pollution is still a frequent and particularly dangerous phenomenon, thus there is a need to remove these pollutants. Various types of mineral sorbents (silicate minerals, zeolites, perlite, diatomite, clay rocks) are highly valued in remediation processes due to their affordable, big selectivity and high efficiency. However, many sorbents are not resistant to moisture, which limits their use. The hydrophobization process improves the effectiveness of sorbents used in a humid environment. The DAMSORB produced by IM-POL was hydrophobized with a methanolic stearic acid solution. The use of cheap stearic acid as a modifier is economically advantageous. The evaluation of the hydrophobic properties of the modified material was performed on the basis of the results obtained from the tests: water absorption, floating on the water surface and the contact angles were determined. Tests of the sorption of petroleum-derived compounds were performed on the basis of three procedures: in accordance with the technical sheet of the leading producer of hydrophobic sorption materials in Poland, the Westighouse’s method in the oil layer and the Westighouse’s method on a flat surface. The modified sorbent floats on the surface of the water very well. The average value of the contact angle for the modified sample is 104 degrees. Material is super hydrophobic. In the water environment, the hydrophobized samples have a higher absorption capacity in relation to oil contaminations compared to the raw material. Features of the modified sorbent, such as good buoyancy on the water surface, low affinity to water and better absorption of oil from the solution, make it possible to use the material to remove petroleum contamination from water and highly moist surfaces.
ACKNOWLEDGEMENTS
This work was performed under research subsidy No. 16.16.210.476.
METADATA IN OTHER LANGUAGES:
Polish
Hydrofobizacja ziemi okrzemkowej używanej do usuwania zanieczyszczeń ropopochodnych
hydrofobizacja, ziemia okrzemkowa, zanieczyszczenia olejowe
Skażenie środowiska naturalnego zanieczyszczeniami ropopochodnymi jest nadal częstym i szczególnie niebezpiecznym zjawiskiem, dlatego usuwanie tych zanieczyszczeń jest konieczne. Różnego rodzaju sorbenty mineralne (minerały krzemianowe, zeolity, perlit, ziemia okrzemkowa, skały ilaste) ze względu na przystępną cenę, dużą selektywność i wysoką wydajność są wysoko cenione w procesach remediacji. Jednak wiele z tych sorbentów nie jest odpornych na wilgoć, co ogranicza ich zastosowanie. Proces hydrofobizacji poprawia efektywność sorbentów stosowanych w wilgotnym środowisku. DAMSORB produkowany przez IM-POL zhydrofobizowano metanolowym roztworem kwasu stearynowego. Użycie taniego kwasu stearynowego jako modyfikatora jest korzystne ekonomicznie. Ocenę właściwości hydrofobowych modyfikowanego materiału przeprowadzono na podstawie wyników uzyskanych z badań: nasiąkliwości, unoszenia się na powierzchni wody oraz wyznaczono kąty zwilżania. Badania sorpcji związków ropopochodnych przeprowadzono w oparciu o trzy procedury: zgodnie z kartą techniczną wiodącego producenta hydrofobowych materiałów sorpcyjnych w Polsce, metodą Westighouse’a w warstwie olejowej oraz na powierzchni płaskiej. Modyfikowany sorbent bardzo dobrze unosi się na powierzchni wody. Średnia wartość kąta zwilżania dla zmodyfikowanej próbki wynosi 104 stopnie. Materiał jest superhydrofobowy. W środowisku wodnym próbki hydrofobizowane mają większą chłonność w stosunku do zanieczyszczeń olejowych w porównaniu z surowcem. Cechy modyfikowanego sorbentu, takie jak: dobra wyporność na powierzchni wody, niskie powinowactwo do wody oraz lepsza absorpcja oleju z roztworu pozwalają na zastosowanie materiału do usuwania zanieczyszczeń ropopochodnych z wody i powierzchni silnie zawilgoconych.
REFERENCES (67)
1.
Abdel-Aty et al. 2020 – Abdel-Aty, A.A.R., Aziz, Y.S.A., Ahmed, R.M.G., ElSherbinyc, I.M.A., Ulbricht, S.P.M. and Khalila, A.S.G. 2020. High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation. Separation and Purification Technology 253(15), DOI: 10.1016/j.seppur.2020.117467.
2.
Adebajo et al. 2003 – Adebajo, M., Frost, R. and Kloprogge, T. 2003. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials 10(3), pp. 159–170, DOI: 10.1023/A:1027484117065.
3.
Alghunaim et al. 2016 – Alghunaim, A., Kirdponpattara, S. and Newby, B.Z. 2016. Techniques for determining contact angle and wettability of powders. Powder Technology 287, pp. 201–215, DOI: 10.1016/j.powtec.2015.10.002.
4.
Ali et al. 2012 – Ali, I., Asim, M. and Khan, A. 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management 113, pp. 170-173, DOI: 10.1016/j.jenvman.2012.08.028.
5.
Bai et al. 2020 – Bai, W., Chen, K., Chen, J., Xu, J., Lin, H., Lin, J., Xu, Y. and Lin, J. 2020. Natural highly-hydrophobic urushiol@TiO2 coated cotton fabric for effective oil–water separation in highly acidic alkaline and salty environment. Separation and Purification Technology 253(15), DOI: 10.1016/j.seppur.2020.117495.
6.
Bala et al. 2022 – Bala, S., Garg, D., Thirumalesh, B.V., Sharma, M., Sridhar, K., Inbaraj B.S. and Tripathi, M. 2022. Recent Strategies for Bioremediation of Emerging Pollutants. A Review for a Green and Sustainable Environment. Toxics 10(8), DOI: 10.3390/toxics10080484.
7.
Bastani et al. 2006 – Bastani, D., Safekordi, A.A., Alihosseini, A. and Taghikhani, V. 2006 Study of oil sorption by expanded perlite at 298.15 K. Separation and Purification Technology 52(2), pp. 295–300, DOI: 10.1016/j.seppur.2006.05.004.
8.
Bhardwaj, N. and Bhaskarwar, A.N. 2018. A review on sorbent devices for oil-spill control. Environmental Pollution 243(B), pp. 1758–1771, DOI: 10.1016/j.envpol.2018.09.141.
9.
Bhattacharjee, S. and Dutta, T. 2022. An overview of oil pollution and oil-spilling incidents. [In:] Das P. et al. eds. Advances in Oil-Water Separation, Elsevier. pp. 3–15, DOI: 10.1016/B978-0-323-89978-9.00014-8.
10.
Bigui et al. 2019 – Bigui, W., Cheng, Y., Jianlin, L., Gang, W., Liang, D., Xiaosan, S., Fuping, W., Hua, L. and Qing, Ch. 2019. Fabrication of superhydrophilic and underwater superoleophobic quartz sand filter for oil/water separation. Separation and Purification Technology 229(15), DOI: 10.1016/j.seppur.2019.115808.
11.
Buckton, G. and Newton, J.M. 1986. Assessment of the wettability of powders by use of compressed powder discs. Powder Technology 46, pp. 201–208, DOI: 10.1016/0032-5910(86) 80027-4.
12.
Buczek, B. and Vogt, E. 2014. Waterproof anti-explosive powders for coal mines (Wodoodporne przeciwwybuchowe pyły dla kopalń węgla). Archives of Mining Sciences 59(1) pp. 169–178, DOI: 10.2478/amsc-2014-0012 (in Polish).
13.
Chen et al. 2016 – Chen, Y., Yu, B., Lin, J., Naidu, R. and Chen, Z. 2016. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal 289(1), pp. 463–470, DOI: 10.1016/j.cej.2016.01.010.
14.
Czikkely et al. 2018 – Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P. and Fogarassy, C. 2018. Review of Heavy Metal Adsorption Processes by Several Organic Matters from Wastewaters. Water 10(10), DOI: 10.3390/w10101377.
15.
Davoodi et al. 2019 – Davoodi, S.M., Taheran, M., Brar, S.K. Galvez-Cloutier, R. and Martel, R. 2019. Hydrophobic dolomite sorbent for oil spill clean-ups: Kinetic modeling and isotherm study. Fuel 251(1) pp. 57–72, DOI: 10.1016/j.fuel.2019.04.033.
16.
Deschamps et al. 2003 – Deschamps, G., Caruel, H. and Vignoles, Ch. 2003. Oil removal from water by sorption on hydrophobic cotton fibers. Environmental Science and Technology 37, pp. 5034–5039, DOI: 10.1021/es020249b.
17.
Elsayed, E. 2011. Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). Water Science 32(1), pp. 32-42, DOI: 10.1016/j.wsj.2018.02.001.
18.
EN 1097-6:2022 – Standard, EN 1097-6:2022, Tests for mechanical and physical properties of aggregates – Part 6: Determination of particle density and water absorption.
20.
Galblaub et al. 2016 – Galblaub, O.A., Shaykhiev, I.G., Stepanova, S.V. and Timirbaeva, G.R. 2016. Oil spill clean-up of water surface by plant-based sorbents: Russian practices. Process Safety and Environmental Protection 101, pp. 88–92, DOI: 10.1016/j.psep.2015.11.002.
21.
Gray et al. 2013 – Gray, T.M., Simpson, B.J., Nicolich, M.J., Murray, F.J., Verstuyft, A.W., Roth, R.N. and McKee R.H. 2013. Assessing the mammalian toxicity of high-boiling petroleum substances under the rubric of the HPV program. Regulatory Toxicology and Pharmacology 67(2), Supplement, pp. 54–59, DOI: 10.1016/j.yrtph.2012.11.014.
22.
Guo et al. 2018 – Guo, D., Wang, H., Fu, P., Huang, Y., Liu, Y., Lv, W. and Wang, F. 2018. Diatomite precoat filtration for wastewater treatment: Filtration performance and pollution mechanisms. Chemical Engineering Research and Design 137, pp. 403–411, DOI: 10.1016/j.cherd.2018.06.036.
23.
Han et al. 2021 – Han, L., Wu, W., Huang, Z., Lei, W., Li, S., Zhang, H., Jia, Q. and Zhang, S. 2021. Preparation and characterization of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite ceramic as highly efficient sorbent for oil–water separation. Separation and Purification Technology 254, DOI: 10.1016/j.seppur.2020.117620.
24.
Haque et al. 2022 – Haque, S., Srivastava, N., Pal, D.B., Alkhanani, M.F., Almalki, A.H., Areeshi, M.Y., Naidu, R. and Gupta, V.K. 2022. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils. A review, Science of The Total Environment 833, DOI: 10.1016/j.scitotenv.2022.155222.
28.
Kafle et al. 2019 – Karki, H.P., Kafle, L. and Kim, H.J. 2019. Modification of 3D polyacrylonitrile composite fiber for potential oil-water mixture separation. Separation and Purification Technology 229(15), DOI: 10.1016/j.seppur.2019.115840.
29.
Kamyk, J. and Kot-Niewiadomska, A. 2021. Domestic demand for crude oil in the context of the challenges of the European Green Deal. Conference: XXXIV Konferencja Zagadnienia surowców energetycznych i energii w gospodarce krajowej, DOI: 10.13140/RG.2.2.25206.73281 (in Polish).
30.
Kukkar et al. 2020 – Kukkar, D., Rani, A., Kumar, V., Younis, S.A., Zhang, M., Lee, S.S., Tsang, D.C.W. and Kim, K.H. 2020. Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. Journal of Colloid and Interface Science 570(15), pp. 411–422, DOI: 10.1016/j.jcis.2020.03.006.
31.
Li et al. 2019 – Li, N., Yue, O., Gao, B., Xu, X., Su, R. and Yu, B. 2019. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. Journal of Cleaner Production 207, pp. 764–771, DOI: 10.1016/j.jclepro.2018.10.038.
32.
Li et al. 2022 – Li, X., Han, L., Huang, Z., Li, Z. Li, F., Duan, H., Huang, L., Jia, Q., Zhang, H. and Zhang, S. 2022. A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion. Chemosphere 303(1), DOI: 10.1016/j.chemosphere.2022.134756.
33.
Łuksa et al. 2010 – Łuksa, A., Mendrycka, M. and Stawarz, M. 2010. Bioremediation of oily soils with the use of sorbents (Bioremediacja gleb zaolejonych z wykorzystaniem sorbentów) Oil-Gas, Nafta-Gas 66(9), pp. 810–818 (in Polish).
34.
Machado et al. 2006 – Machado, L.C.R., Lima, F.W.J., Paniago, R., Ardisson, J.D., Sapag, K. and Lago, R.M. 2006. Polymer coated vermiculite–iron composites: Novel floatable magnetic adsorbents for water spilled contaminants. Applied Clay Science 31, pp. 207–215, DOI: 10.1016/j.clay.2005.07.004.
35.
Mahmoud et al. 2021 – Mahmoud, A.R., Keshawy, M. and El-Sayed Abdel-Raouf, M. 2021. Organogels as oil sorbers for oil spill treatment. [In:] Delgado, A.N. ed. Sorbents Materials for Controlling Environmental Pollution. Elsevier, pp. 387–413, DOI: 10.1016/B978-0-12-820042-1.00017-1.
36.
Moura, F.C.C. and Lago, R.M. 2009. Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Applied Catalysis B: Environmental 90(3–4), pp. 436–440.
37.
Nnaji et al. 2016 – Nnaji, N.J.N., Onuegbu, T.U., Edokwe, O., Ezeh, G.C. and Ngwu, A.P. 2016. An approach for the reuse of Dacryodes edulis leaf: Characterization, acetylation and crude oil sorption studies. Journal of Environmental Chemical Engineering 4(3), pp. 3205–3216, DOI: 10.1016/j.jece.2016.06.010.
39.
Periasamy et al. 2017 – Periasamy, A.P., Wu, W.P, Ravindranath, R., Roy, P., Lin, G.L. and Changa, H.T. 2017. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Marine Pollution Bulletin 114(2), pp. 888–895, DOI: 10.1016/j.marpolbul.2016.11.005.
40.
Pijarowski, P.M. and Tic, W.J. 2014. Research on using mineral sorbents for a sorption process in the environment contaminated with petroleum substances. Civil and environmental engineering reports 12(1), pp. 83–93, DOI: 10.2478/ceer-2014-0008.
41.
Regulation ME 2010. Regulation of the Minister of Internal Affairs and Administration of 27 April 2010, on the list of safety products public health and life and property protection, as well as the rules for issuing a permit of these products for use (Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 27 kwietnia 2010 r. w sprawie wykazu wyrobów służących zapewnieniu bezpieczeństwa publicznego lub ochronie zdrowia i życia oraz mienia, a także zasad wydawania dopuszczenia tych wyrobów do użytkowania) (Dz.U. 2010.85.7302.553) (in Polish).
42.
Rouliaa et al. 2003 – Rouliaa, M., Chassapis, K., Fotinopoulos, Ch., Savvidis, Th. and Katakis, D. 2003. Dispersion and Sorption of Oil Spills by Emulsifier-Modified Expanded Perlite. Spill Science & Technology Bulletin 8(5–6), pp. 425–431, DOI: 10.1016/S1353-2561(02)00066-X.
43.
Shadi et al. 2021 – Shadi, M., Yassin, K., Ibrahim, M.E., Garforth, A. and Alfutimie, A. 2021. On copper removal from aquatic media using simultaneous and sequential iron-perlite composites. Journal of Water Process Engineering 40, DOI: 10.1016/j.jwpe.2020.101842.
44.
Shukla et al. 2022 – Shukla, S., Khan, R., Bhattacharya, P., Devanesan, S. and AlSalhi, M.S. 2022. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. Chemosphere 292, DOI: 10.1016/j.chemosphere.2021.133413.
46.
Sintac Polska sp. z o.o. jv. – Over 20 years of experience in treating leaks hazardous substances (Ponad 20 lat doświadczenia w usuwaniu wycieków substancji niebezpiecznych). [Online]
https://sintac.pl/wp-content/u... [Accessed: 2022-10-24] (in Polish).
48.
Sriram et al. 2020 – Sriram, G., Uthappa, U.T., Losic, D., Kigga, M., Jung, H.Y. and Kurkuri, M.D. 2020. Mg–Al-Layered Double Hydroxide (LDH) modified diatoms for highly efficient removal of Congo Redfrom aqueous solution. Applied Science 10(7), DOI: 10.3390/app10072285.
50.
Szerement et al. 2021 – Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T. and Mierzwa-Hersztek, M. 2021. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production 311, DOI: 10.1016/j.jclepro.2021.127461.
51.
Szułczyńska et al. 2020 – Szułczyńska, D., Gniazdowska, J. and Małek, J. 2020. Sorption properties of chemically modified extinguishing powders (Właściwości sorpcyjne proszków gaśniczych modyfikowanych chemicznie). Chemical Industry, Przemysł Chemiczny 99(11), pp. 1673–1676 (in Polish).
52.
Tauanov et al. 2020 – Tauanov, Z., Azat, S. and Baibatyrova, A. 2020. A mini-review on coal fly ash properties, utilization and synthesis of zeolites. International Journal of Coal Preparation and Utilization 42(7), pp. 1–23, DOI: 10.1080/19392699.2020.1788545.
53.
Teas et al. 2001 – Teas, Ch., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E. and Anastopoulos, G. 2001. Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140(3), pp. 259–264, DOI: 10.1016/S0011-9164(01)00375-7.
54.
Tohry et al. 2020 – Tohry, A., Dehghan, R., Oliveira, A.V., Chelgani, S.Ch. and Leal Filho, L.S. 2020. Enhanced Washburn Method (EWM): A comparative study for the contact angle measurement of powders. Advanced Powder Technology 31(12), pp. 4665–4671, DOI: 10.1016/j.apt.2020.10.014.
55.
Touina et al. 2021 – Touina, A., Chernai, S., Mansour, B., Hadjar, H., Ouakouak, A. and Hamdi, B. 2021. Characterization and efficient dye discoloration of Algerian diatomite from Ouled Djilali-Mostaganem. SN Applied Sciences 3(476), DOI: 10.1007/s42452-021-04334-9.
56.
UNI CEN/TS 15366 – UNI CEN/TS 15366 – Winter and road service area maintenance equipment – solid absorbents intended for road usage.
57.
Venkatesan et al. 2022 – Venkatesan, N., Yuvaraj, P. and Fathima, N.N. 2022. Fabrication of non-fluorinated superhydrophobic and flame retardant porous material for efficient oil/water separation. Materials Chemistry and Physics 286, DOI: 10.1016/j.matchemphys.2022.126190.
58.
Vogt, E. 2011. Hydrophobized limestone powder as an antiexplosive agent, Polish Journal of Environmental Studies 20(3), pp. 801–804.
59.
Vogt, E. 2013. Effects of commercial modifiers on flow properties of hydrophobized limestone powders, Polish Journal of Environmental Studies 22(4), pp. 1213–1218.
60.
Vogt, E. and Płachta, Ł. 2017. The new method of modifying the hydrophobic properties of expanded perlite, E3S Web Conf., 14, DOI: 10.1051/e3sconf/20171402034.
61.
Vogt et al. 2019 – Vogt, E., Węgrzynowicz, A., Vogt, O. and Čablík, W. 2019. Application of krypton and nitrogen isotherms to characterisation of hydrophobized fine dispersional limestone material. Adsorption: Journal of the International Adsorption Society 25(3), pp. 477–483, DOI: 10.1007/s10450-019-00033-5.
62.
Vogt et al. 2021 – Vogt, E., Chmura, G. and Vogt, O. 2021. Modification of the hydrophobic properties of mineral adsorbents for the removal of petroleum pollutants. [In:] Pikoń, K. and Bogacka, M., eds. Contemporary problems of power engineering and environmental protection 2020, Gliwice, Silesian University of Technology, pp. 63–72. [Online]
https://drive.google.com/file/... [Accessed: 2022-10-24].
63.
Wanga, S. and Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156, pp. 11–24, DOI: 10.1016/j.cej.2009.10.029.
64.
Washburn, E.W. 1921. The Dynamics of Capillary Rise. Physical Review 18, pp. 273–283.
65.
Xu et al. 2022 – Xu, H., Yang, X., Qin, Y. and Wang, Y. 2022. Functional graphene oxide coated diatomite for efficient and recyclable demulsification of crude oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 650, DOI: 10.1016/j.colsurfa.2022.129559.
66.
Yao et al. 2019 – Yao, H., Lu, X., Xin, Z., Zhang, H. and Li, X. 2019. A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation. Separation and Purification Technology 229(15), DOI: 10.1016/j.seppur.2019.115792.
67.
Zamparas et al. 2020 – Zamparas, M., Tzivras, D., Dracopoulos, V. and Ioannides, T. 2020. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 25(19), DOI: 10.3390/molecules25194522.