ORIGINAL PAPER
Identification of Knothe’s subsidence model parameters based on final subsidence values of individual pairs of points
,
 
 
 
More details
Hide details
1
Strata Mechanics Research Institute Polish Academy of Sciences
 
2
AGH University of Krakow
 
 
Submission date: 2024-12-03
 
 
Final revision date: 2025-02-14
 
 
Acceptance date: 2025-04-12
 
 
Publication date: 2025-06-11
 
 
Corresponding author
Dawid Mrocheń   

Strata Mechanics Research Institute Polish Academy of Sciences
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(2):161-175
 
KEYWORDS
TOPICS
ABSTRACT
The article presents an innovative method for parameter identification of the Knothe integral-geometric model, which is based on analyzing subsidence differences for pairs of points. This method leverages observations from monitoring the displacements of buildings and engineering structures in areas affected by mining activities. By utilizing relative observations, i.e., differences in subsidence between point pairs for individual structures, elevation benchmarks are not needed during measurements. A key assumption of the methodology is the use of the asymptotic subsidence state, corresponding to the final stage of subsidence trough formation. Model parameters are iteratively determined by solving the inverse problem using the Gauss-Markov algorithm. This approach minimizes the sum of squared differences between the measured and calculated subsidence differences, enabling precise parameter fitting to the observed data. The implementation of a computation stop criterion concludes the iterative process of parameter identification. This criterion is based on achieving convergence in the form of a defined change in the estimated parameter values of the model between iterations, ensuring the efficiency and stability of the computations. The practical applicability of the method was validated using simulation data, confirming its capability to reconstruct the entire displacement field. The results enable not only the assessment of risk for unmonitored structures but also the prediction of future impacts of planned mining operations on the surface of the studied region.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Identyfikacja parametrów modelu osiadania Knothego w oparciu o końcowe wartości osiadania pojedynczych par punktów
parametryzacja, różnice obniżeń, model Knothego, algorytm Gaussa-Markowa
W artykule zaprezentowano nowatorską metodę identyfikacji parametrów modelu całkowo-geometrycznego Knothego, która opiera się na analizie różnic osiadania dla par punktów. Metoda ta pozwala na wykorzystanie obserwacji pochodzących z monitorowania przemieszczeń budynków i konstrukcji inżynierskich na obszarach oddziaływania działalności górniczej. Dzięki wykorzystaniu obserwacji względnych, tj. różnic obniżeń par punktów dla pojedynczych obiektów budowlanych, nie jest wymagane nawiązanie wysokościowe dla wykonywanych pomiarów wysokościowych. Kluczowym założeniem metodologii było wykorzystanie asymptotycznego stanu osiadania, który odpowiada końcowemu etapowi formowania się niecki osiadania. Parametry modelu są iteracyjnie wyznaczane poprzez rozwiązywanie problemu odwrotnego za pomocą algorytmu Gaussa-Markowa. Metoda ta minimalizuje sumę kwadratów różnic między zmierzonymi a obliczonymi wartościami różnic osiadania, co pozwala na precyzyjne dopasowanie parametrów do obserwowanych danych. Zastosowanie kryterium stopu obliczeń kończy iteracyjny proces identyfikacji parametrów. Kryterium to polega na osiągnięciu zbieżności w postaci zdefiniowanego przyrostu wyznaczonych wartości parametrów modelu między iteracjami, co gwarantuje efektywność i stabilność obliczeń. Praktyczną użyteczność metody zweryfikowano przy użyciu danych symulacyjnych, co potwierdziło możliwość rekonstrukcji całego pola przemieszczeń. Otrzymane wyniki umożliwiają nie tylko ocenę ryzyka dla niemonitorowanych obiektów, ale także prognozowanie przyszłych oddziaływań planowanych operacji górniczych na powierzchnię terenu w badanym regionie.
REFERENCES (53)
1.
Babaryka, A. and Benndorf, J. 2023. Ground Subsidence above Salt Caverns for Energy Storage: A Comparison of Prediction Methods with Emphasis on Convergence and Asymmetry. Mining 3(2), pp. 334–346, DOI: 10.3390/mining3020020.
 
2.
Bals, R. 1932. Contribution to the question of forecasting mining subsidence (Beitrag zur Frage der Vorausberechnung bergbaulicher Senkungen). Mitteilungen aus dem Markscheidewesen 42/43, pp. 98–111 (in German).
 
3.
Baochen, L. and Guohua, L. 1965. Coal Mining Ground Surface Movements. Chinese Industry Press, Beijing.
 
4.
Beyer, F. 1945. Über die Vorausbestimmung der beim Abbau flachgelagerter Flötze aufreten den Bodenverformungen (Habilitationsschrift). TU Berlin.
 
5.
Blachowski et al. 2024 – Blachowski, J., Wajs, J., Walerysiak, N. and Becker, M. 2024. Monitoring of post- -mining subsidence using airborne and terrestrial laser scanning approach. Archives of Mining Sciences 69, pp. 431–446, DOI: 10.24425/ams.2024.151444.
 
6.
Byrnes, R. 2003. Case Studies in the Application of Influence Functions to Visualising Surface Subsidence. Conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy, pp. 90–100.
 
7.
Cempiel et al. 2023 – Cempiel, E., Strzalkowski, P., Ścigala, R., Bryt-Nitarska, I. 2023. Assessment of damage causes of monumental objects located in mining areas – case study. Archives of Mining Sciences 68, pp. 187–205, DOI: 10.24425/ams.2023.146175.
 
8.
Chai et al. 2023 – Chai, H., Xu, M., Guan, P., Ding, Y., Xu, H., Zhao, Y. 2023. Research on Mining Subsidence Prediction Parameter Inversion Based on Improved Modular Vector Method. Applied Sciences 13(24), DOI: 10.3390/app132413272.
 
9.
Dudek et al. 2024 – Dudek, M., Mrocheń, D., Sroka, A., Tajduś, K. 2024. Integrating the Finite Element Method with Python Scripting to Assess Mining Impacts on Surface Deformations. Applied Sciences 14(17), DOI: 10.3390/app14177797.
 
10.
Gruszczyński et al. 2018 – Gruszczyński, W., Niedojadło, Z., Mrocheń, D. 2018. Influence of model parameter uncertainties on forecasted subsidence. Acta Geodynamica et Geomaterialia 15(3), pp. 211–228, DOI: 10.13168/AGG.2018.0016.
 
11.
Guzy, A. and Witkowski, W.T. 2021. Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining. Energies 14(15), DOI: 10.3390/en14154658.
 
12.
Hejmanowski, R. 2004. Modelling in time and space of deformation caused by open stope mining in a layered orebody. Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH (in Polish).
 
13.
Hejmanowski, R. and Malinowska, A.A. 2017. Land subsidence inversion method application for salt mining-induced rock mass movement. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 33(3), pp. 179–200, DOI: 10.1515/gospo-2017-0034.
 
14.
Jiang et al. 2023 – Jiang, Y., Preusse, A., Sroka, A., Misa, R., Gao, J., Yang, Z., Jiang, Yue, Xu, Y., Zhang, X., Tajduś, K., Kateloe, H.J. and Frenz, W. 2023. Theory and Application of Prediction of Surface Movement and Deformation Caused by Underground Mining. China University of Mining and Technology Press.
 
15.
Jiránková et al. 2020 – Jiránková, E., Waclawik, P. and Nemcik, J. 2020. Assessment of models to predict surface subsidence in the Czech part of the upper silesian coal basin-case study. Acta Geodynamica et Geomaterialia 17(4), pp. 469–484, DOI: 10.13168/AGG.2020.0034.
 
16.
Karmis et al. 2008 – Karmis, M., Agioutantis, Z. and Andrews, K. 2008. Enhancing Mine Subsidence Prediction and Control Methodologies. 27th International Conference on Ground Control in Mining. Morgantown, West Virginia, USA, 29–31 July, pp. 131–136.
 
17.
Keinhorst, H. 1925. Die Berechnung der Bodensenkungen im Emschergebiet. Festschrift 25 Jahre der Emschergenossenschaft 1900–1925. Essen, Germany.
 
18.
Knothe, S. 1953. A profile equation for a definitely shaped subsidence trough. Archives of Mining Steel Industry 1, pp. 22–38.
 
19.
Knothe, S. 1957. Observations of surface movements under influence of mining and their theoretical interpretation. Conference Proceedings European Congress on Ground Movement. Leeds, pp. 210–218.
 
20.
Knothe, S. 1984. Prediction of mining influence (Prognozowanie wpływów eksploatacji górniczej). Katowice: Śląsk Publishing House (in Polish).
 
21.
Kochmański, T. 1949. Horizontal and vertical ground shifts due to mining reconstruction (Przesunięcia terenu i w pionie i poziomie pod wpływem odbudowy górniczej). Hutnik 7–8 (in Polish).
 
22.
Kochmański, T. 1959. Integral-Theorie der Bodenbewegungen unter Einwirkung des Abbaus. Freiberger Forschungshefte A118, 36–58.
 
23.
Kowalski, A. 2007. Undetermined Mining Surface Deformation in Terms of the Accuracy of Projections (Nieustalone górnicze deformacje powierzchni w aspekcie dokładności prognoz). Studia – Rozprawy – Monografie 871, Katowice: GIG (in Polish).
 
24.
Kratzsch, H. 1983. Mining Subsidence Engineering. Springer-Verlag, Berlin Heidelberg New York.
 
25.
Kwinta, A. 2011. Application of the least squares method in determination of the Knothe deformation prediction theory parameters. Archive of Mining Sciences 56(2), pp. 319–329.
 
26.
Lei et al. 2024 – Lei, M., Zhang, T., Shi, J. and Yu, J. 2024. InSAR-CTPIM-Based 3D Deformation Prediction in Coal Mining Areas of the Baisha Reservoir, China. Applied Sciences 14(12), DOI: 10.3390/app14125199.
 
27.
Lian et al. 2011 – Lian, X., Jarosz, A., Saavedra-Rosas, J. and Dai, H. 2011. Extending dynamic models of mining subsidence. Transactions of Nonferrous Metals Society of China 21, pp. s536–s542, DOI: 10.1016/S1003-6326(12)61637-9.
 
28.
Li et al. 2017 – Li, P., Peng, D., Tan, Z. and Deng, K. 2017. Study of probability integration method parameter inversion by the genetic algorithm. International Journal of Mining Science and Technology 27, pp. 1073–1079, DOI: 10.1016/j.ijmst.2017.06.006.
 
29.
Li et al. 2021 – Li, J., Yu, X., Liang, Y. and Chi, S. 2021. Parameter Solving of Probability Integral Method Based on Improved Genetic Algorithm. Tehnicki vjesnik – Technical Gazette 28(2), DOI: 10.17559/TV-20200429150210.
 
30.
Litwiniszyn, J. 1953. Differential equation of rock displacement (Równanie różniczkowe przemieszczeń górotworu). Archives of Mining Steel Industry 1(1), pp. 9–21 (in Polish).
 
31.
Liu et al. 2022 – Liu, H., Li, M., Yuan, M., Li, B. and Jiang, X. 2022. A fine subsidence information extraction model based on multi-source inversion by integrating InSAR and leveling data. Natural Hazards 114(3), pp. 2839–2854, DOI: 10.1007/s11069-022-05494-6.
 
32.
Liu et al. 2024 – Liu, H., Yuan, M., Li, M., Li, B., Chen, N., Wang, J., Li, X. and Wu, X. 2024. TDFPI: A Three-Dimensional and Full Parameter Inversion Model and Its Application for Building Damage Assessment in Guotun Coal Mining Areas, Shandong, China. Remote Sensing 16(4), DOI: 10.3390/rs16040698.
 
33.
Misa, R. 2023. Knothe’s theory parameters – computational models and examples of practical applications. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(4), 157–180, DOI: 10.24425/gsm.2023.148164.
 
34.
Nicieza et al. 2005 – Nicieza, C.G., Álvarez Fernández, M.I., Menéndez Díaz, A. and Álvarez Vigil, A.E. 2005. The new three-dimensional subsidence influence function denoted by n–k–g. International Journal of Rock Mechanics and Mining Sciences 42(3), pp. 372–387, DOI: 10.1016/j.ijrmms.2004.12.003.
 
35.
Niedojadło et al. 2023 – Niedojadło, Z., Stoch, T., Jura, J., Sopata, P., Wójcik, A. and Mrocheń, D. 2023. Monitoring and modelling the deformation state of a dyke of a flotation tailings reservoir of a copper ore mine. Acta Montanistica Slovaca 28(1), pp. 123–140, DOI: 10.46544/AMS.v28i1.11.
 
36.
Peng, S.S. 1992. Surface subsidence engineering. Society for Mining, Metallurgy, and Exploration Littleton, CO (USA).
 
37.
Puniach et al. 2023 – Puniach, E., Gruszczyński, W., Stoch, T., Mrocheń, D., Ćwiąkała, P., Sopata, P., Pastucha, E. and Matwij, W. 2023. Determination of the coefficient of proportionality between horizontal displacement and tilt change using UAV photogrammetry. Engineering Geology 312(1), DOI: 10.1016/j.enggeo.2022.106939.
 
38.
Reddish, D.J. and Whittaker, B.N. 2012. Subsidence: Occurrence, Prediction and Control. Elsevier Science.
 
39.
Ren et al. 2014 – Ren, G., Li, G. and Kulessa, M. 2014. Application of a Generalised Influence Function Method for Subsidence Prediction in Multi-seam Longwall Extraction. Geotechnical and Geological Engineering 32, pp. 1123–1131.
 
40.
Sann, B. 1949. Considerations for the prediction of land subsidence due to coal mining (Betrachtungen zur Vorausberechnung von Bodensenkungen infolge Kohen abbaus). Bergbau Rundschau 1, pp. 163–168 (in German).
 
41.
Schober et al. 1987 – Schober, F., Sroka, A. and Hartmann, A. 1987. A concept for predicting subsidence over cavern fields (Ein Konzept zur Senkungsvorausberecnung über kavernfeldern). Kali und Steinsaltz 9, pp. 374–379 (in German).
 
42.
Ścigała, R. 2008. Computer-aided forecasting of rock mass and surface deformations caused by underground mining (Komputerowe wspomaganie prognozowania deformacji górotworu i powierzchni wywołanych podziemną eksploatacją górniczą). Gliwice: P.Śl. (in Polish).
 
43.
Sroka, A. 2005. A contribution to the forecast of uplifts caused by the rise in mine water (Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen). [In:] Conference Proceedings 5. Altbergbaukolloquium, Technische Universität Clausthal. Verlag Glückauf, Essen, pp. 453–464 (in German).
 
44.
Sroka, A. and Hejmanowski, R. 2006. Subsidence prediction caused by the oil and gas development. [In:] Proceedings of the 3rd/12th FIG Symposium. Baden, Germany, 22–24 May 2006.
 
45.
Sroka et al. 2018a – Sroka, A., Misa, R. and Tajduś, K. 2018a. Determination of the horizontal deformation factor for mineral and fluidized deposits exploitation. Acta Geodynamica et Geomaterialia 15, pp. 23–26, DOI: 10.13168/AGG.2017.0030.
 
46.
Sroka et al. 2018b – Sroka, A., Misa, R. and Tajduś, K. 2018b. Modern applications of the Knothe theory in calculations of surface and rock mass deformations. Prace Instytutu Mechaniki Górotworu PAN 20, pp. 111–122.
 
47.
Szojda, L. and Kapusta, L. 2023. Numerical analysis of buildings located on the edge of the post-mining basin. Archives of Mining Sciences 68(1), pp. 125–140, DOI: 10.24425/ams.2023.144321.
 
48.
Tajduś et al. 2018 – Tajduś, K., Misa, R. and Sroka, A. 2018. Analysis of the surface horizontal displacement changes due to longwall panel advance. International Journal of Rock Mechanics and Mining Sciences 104, pp. 119–125, DOI: 10.1016/j.ijrmms.2018.02.005.
 
49.
Tajduś et al. 2021 – Tajduś, K., Sroka, A., Misa, R., Tajduś, A. and Meyer, S. 2021. Surface deformations caused by the convergence of large underground gas storage facilities. Energies 14(2), DOI: 10.3390/en14020402.
 
50.
Tajduś et al. 2023 – Tajduś, K., Sroka, A., Dudek, M., Misa, R., Hager, S. and Rusek, J. 2023. Effect of the Entire Coal Basin Flooding on the Land Surface Deformation. Archives of Mining Sciences 68(3), pp. 375–392, DOI: 10.24425/ams.2023.146857.
 
51.
Wang et al. 2018 – Wang, L., Wei, T., Li, N., Chi, S., Jiang, C. and Fang, S. 2018. Research on probability integration parameter inversion of mining-induced surface subsidence based on quantum annealing. Environ Earth Sci 77(21), DOI: 10.1007/s12665-018-7927-z.
 
52.
Witkowski, W.T. 2014. Implementation of the least squares method in determining the parameters of Knothe’s theory. Geomatics and Environmental Engineering 8(3), DOI: 10.7494/geom.2014.8.3.107.
 
53.
Zhao et al. 2024 – Zhao, J., Niu, Y., Zhou, Z., Lu, Z., Wang, Z., Zhang, Z., Li, Y. and Ju, Z. 2024. Construction of Mining Subsidence Basin and Inversion of Predicted Subsidence Parameters Based on UAV Photogrammetry Products Considering Horizontal Displacement. Remote Sens 16(22), DOI: 10.3390/rs16224283.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top