ORIGINAL PAPER
Research on mixed noise removal algorithm for ore images based on fusion filtering technique
More details
Hide details
1
Jiangxi University of Science and Technology,Faculty of Mechatronic Engineering
Submission date: 2024-06-05
Final revision date: 2024-07-27
Acceptance date: 2024-10-23
Publication date: 2024-12-17
Corresponding author
Ao Chen
Jiangxi University of Science and Technology,Faculty of Mechatronic Engineering
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(4):91-105
KEYWORDS
TOPICS
ABSTRACT
To meet the requirements of the image processing process on image quality, as the ore image contains Gaussian noise, pepper noise, Rayleigh noise, and other kinds of mixed noise is easy to destroy the real information of the image combined with the advantages of wavelet and non-local mean filtering, a new wavelet + non-local mean (NL-means) fusion denoising algorithm is proposed. Taking the ore image with mixed noise obtained from a mine as the research object, the wavelet function is used to carry out a two-dimensional wavelet transform on the filled image, separating the high and low-frequency information, setting the threshold vector to deal with the high-frequency wavelet coefficients, inverting the transform to get the first reconstructed image, followed by the second inverse transform. Then, the second reconstructed image is subjected to NL-mean denoising to remove the complex mixed noise in the ore image to the maximum extent. The experimental results show that the noise reduction performance of the fusion denoising algorithm has a greater improvement compared with the single filter and several other fusion algorithms. The peak signal-to-noise ratio of the denoised image is 31.0181dB. The structural similarity is 0.59913, which is 15.7584dB and 0.45241, respectively, compared with that before denoising. It has an obvious effect on the removal of the mixed noise in the ore image, which provides strong technical support to improve the noise removal of the ore image.
ACKNOWLEDGEMENTS
This study was supported by the National Natural Science Foundation of China (52364025).
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Badania nad algorytmem usuwania szumu mieszanego dla obrazów rudy w oparciu o technikę filtrowania fuzyjnego
algorytm odszumiania, szum mieszany, złożone warunki działania, przetwarzanie obrazu
Aby spełnić wymagania procesu przetwarzania obrazu dotyczące jakości obrazu, ponieważ obraz rudy zawiera szum Gaussa, szum pieprzowy, szum Rayleigha i inne rodzaje szumu mieszanego, łatwo jest zafałszować rzeczywiste dane obrazu w połączeniu z zaletami filtrowania falkowego i średniej nielokalnej, zaproponowano nowy algorytm odszumiania fuzji falkowej + średniej nielokalnej (NL-means). Biorąc obraz rudy z szumem mieszanym uzyskany z kopalni jako obiekt badawczy, funkcja falkowa jest używana do przeprowadzenia dwuwymiarowej transformacji falkowej na wypełnionym obrazie, oddzielając informacje o wysokiej i niskiej częstotliwości, ustawiając wektor progowy w celu radzenia sobie ze współczynnikami falkowymi o wysokiej częstotliwości, odwracając transformację w celu uzyskania pierwszego zrekonstruowanego obrazu, a następnie drugiej odwrotnej transformacji. Następnie drugi zrekonstruowany obraz jest poddawany odszumianiu NL-mean w celu usunięcia złożonego szumu mieszanego w obrazie rudy w maksymalnym stopniu. Wyniki eksperymentów pokazują, że wydajność redukcji szumu algorytmu odszumiania fuzji jest większa w porównaniu z pojedynczym filtrem i kilkoma innymi algorytmami fuzji. Szczytowy stosunek sygnału do szumu odszumionego obrazu wynosi 31,0181 dB. Podobieństwo strukturalne wynosi 0,59913, co stanowi odpowiednio 15,7584 dB i 0,45241 w porównaniu z tym przed odszumianiem. Ma to oczywisty wpływ na usuwanie szumu mieszanego w obrazie rudy, co zapewnia silne wsparcie techniczne w celu poprawy usuwania szumu obrazu rudy.
REFERENCES (21)
1.
Anwar, S. and Barnes, N. 2019. Real Image Denoising with Feature Attention. IEEE International Conference on Computer Vision 2019, abs/1904. DOI: 10.1109/ICCV.2019.00325.
2.
Boppudi, V. 2022. Design and Development of Contrast-Limited Adaptive Histogram Equalization Technique for Enhancing MRI Images by Improving PSNR, UIQI Parameters in Comparison with Median Filtering. ECS Transactions 107(1), DOI: 10.1149/10701.14819ecst.
3.
Du et al. 2017 – Du, C.M., Ji, Z.G., Zhang, C. 2017. Non-local mean denoising of mine remote sensing images based on wavelet thresholding method. Metal Mine 3, pp. 116–120.
4.
Hu et al. 2022 – Hu, Y., Xu, C., Li, Z., Lei, F., Feng, B., Chu, L., Nie, C. and Wang, D. 2022. Detail enhancement multi-exposure image fusion based on homomorphic filtering. Electronics 11(8), DOI: 10.3390/electronics11081211.
5.
Huang, C.Q. 2019. Research on pretzel denoising algorithm for accurate noise calibration. Journal of Optoelectronics.Laser 30(11), pp. 1205–1214.
6.
Kim et al. 2019 – Kim, D.W., Chung, J.R. and Jung, S.W. 2019. Grdn: Grouped residual dense network for real image denoising and gan-based real-world noise modeling. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. DOI: 10.48550/arXiv.1905.11172.
7.
Li et al. 2010 – Li, C.Y., Anwar, S. and Porikli, F. 2020. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognition 98(C), DOI: 10.1016/j.patcog.2019.107038.
8.
Lielāmurs et al. 2023 – Lielāmurs, E., Cvetkovs, A., Novickis, R. and Ozols, K. 2023. Infrared Image Pre-Processing and IR/RGB Registration with FPGA Implementation. Electronics 12(4), DOI: 10.3390/electronics12040882.
9.
Lui et al. 2021 – Liu, C.Y., Wang, S.F., Wang K.X., Chen, s. and Sun Q. 2021. Non-local means filter method based on cosine similarity index. Journal of Changchun University of Science and Technology (Natural Science Edition) 44(2), pp. 18–26.
10.
Ma et al. 2021 – Ma, T.L., Zhang, Y. and Chen, C.B. 2021. Variational bayesian expectation maximization filtering algorithm for systems with uncertain mixed noise. Journal of Chinese Inertial Technology 29(4), pp. 475–481+490.
11.
Mei et al. 2023 – Mei, Y.Q., Fan, Y.C., Zhang, Y.L., Yu, J, Zhou, Y., Liu, G., Fu, Y., Huang, T.S. and Shi, H. 2023. Pyramid Attention Network for Image Restoration. International Journal of Computer Vision 131(12), DOI: 10.1007/s11263-023-01843-5.
12.
Somvanshi et al. 2017 – Somvanshi, S.S., Kunwar, P., Tomar S.T. and Singh, M. 2017. Comparative statistical analysis of the quality of image enhancement techniques. International Journal of Image and Data Fusion 9(2), pp. 131–151, DOI: 10.1080/19479832.2017.1355336.
13.
Sun, C. 2019. Wavelet domain-based noise reduction of non-localized homogeneous medical images. Anhui University of Science and Technology.
14.
Sun et al. 2017 – Sun, Y.J., Shen, X.J., Lv, Y.D. and Liu, C.M. 2017. Recaptured image forensics algorithm based on multi-resolution wavelet transformation and noise analysis. International Journal of Pattern Recognition Artificial Intelligence 32(2), DOI: 10.1142/S0218001418540034.
15.
Sun et al. 2022 – Su, K.Y., Wang, X.G. and Liu,G.M. 2022. Improved Retinex algorithm for image enhancement with uneven illumination. Laser journal 43(9), pp. 103–108.
16.
Tahir et al. 2019 – Tahir, M., Anwar, S., Mian, A. and Muzaffar, A.W. 2019. Deep localization of protein structures in fluorescence microscopy images. CoRR, DOI: 10.48550/arXiv.1910.04287.
17.
Tong et al. 2006 – Tong, Y.B., Zhang, Q.S. and Qi, Y.P. 2006. Image quality evaluation model based on joint PSNR and SSIM. Journal of Image and Graphics 12, pp. 1758–1763.
18.
Wang et al. 2020 – Wang, X.Z., Niu, S.S., Zhang, K., Yin, J.F.and Yan, J. 2020. Infrared weak target image fusion based on wavelet transform and feature extraction. Journal of Northwestern Polytechnical University 38(4), pp. 723–732.
19.
Woo et al. 2018 – Woo, S., Park, J., Lee, J.Y. and Kweon, I.S. 2018. Cbam: Convolutional block attention module. Proceedings of the European conference on computer vision (ECCV). pp. 3–19, DOI: 10.48550/arXiv.1807.06521.
20.
Xu et al. 2023 – Xu, J., Yuan, M., Yan, D.M. and Wu, T. 2023. Deep unfolding multi-scale regularizer network for image denoising. Computational Visual Media 9(2), pp. 335–350, DOI: 10.1007/s41095-022-0277-5.
21.
Zhang et al. 2017 – Zhang, X.M., Cheng, J.F., Kang, Q. and Wang, X. 2017. Iterative adaptive weighted mean filtering for image denoising. Journal of Computer Applications 37(11), pp. 3168–3175.