ORIGINAL PAPER
Decarbonisation determinants of the steel industry
 
More details
Hide details
1
Mineral and Energy Economy Research Institute PAS
 
 
Submission date: 2024-10-08
 
 
Final revision date: 2024-10-28
 
 
Acceptance date: 2024-11-19
 
 
Publication date: 2024-12-17
 
 
Corresponding author
Lidia Gawlik   

Mineral and Energy Economy Research Institute PAS
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(4):71-90
 
KEYWORDS
TOPICS
ABSTRACT
The iron and steel industry is a sector with very high energy consumption and also causing high emissions. It is difficult to imagine the development of modern sectors of the economy such as construction, transport or the machinery industry without the use of steel, so forecasts indicate that the demand for steel will increase in the future. Meanwhile, environmental concerns and concerns about climate change are growing, so the iron and steel industry faces a serious challenge related to reducing its emissions in order to achieve the goal set in the Paris Agreement, and this is even more true for this industry in the European Union. Currently, the most popular technology for steel production is the blast furnace process – basic oxygen furnace (BF-BOF). This technology requires the use of coal, which is a source of emissions, so a radical technological change is needed. Decarbonising the steel industry requires changing from coal-based metallurgy to hydrogen-based and electricity-based metallurgy. Changing from primary to secondary steel production (using scrap steel) improves the situation but is not a solution to meet growing demand. There are two main technology paths that can achieve significant CO2 reduction. The first is Smart Carbon Usage (SCU), which is based on the gradual reduction of coal consumption, including the use of by-product gases for further conversion into valuable products. The second emerging technology path is Carbon Direct Avoidance (CDA). These and other developing methods of low-emission or zero-emission metallurgy are discussed in the article. Unfortunately, some of these methods are not mature and their final commercialisation requires overcoming a number of problems.
ACKNOWLEDGEMENTS
This work was carried out as part of the statutory activity of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Determinanty dekarbonizacji przemysłu stalowego
technologie, dekarbonizacja, przemysł stalowy
Przemysł żelaza i stali jest to sektor o bardzo wysokim zużyciu energii, a także powodujący wysokie emisje. Trudno sobie wyobrazić rozwój współczesnych sektorów gospodarki takich jak budownictwo, transport czy przemysł maszynowy bez wykorzystania stali, zatem prognozy wskazują, że zapotrzebowanie na stali będzie w przyszłości rosło. Tymczasem zyskują na znaczeniu obawy o środowisko i zmiany klimatyczne, zatem przemysł żelazny i stalowy stoi przed poważnym wyzwaniem związanym z redukcją emisji, aby osiągnąć cel wyznaczony w porozumieniu paryskim, a tym bardziej dotyczy to tej branży w Unii Europejskiej. Obecnie najpopularniejszą technologią służącą produkcji stali jest proces wielkiego pieca – podstawowego pieca tlenowego (BF-BOF). Ta technologia wymaga wykorzystania węgla, stanowiącego źródło emisji, zatem potrzebna jest radykalna zmiana technologiczna. Dekarbonizacja przemysłu stalowego wymaga zmiany metalurgii opartej na węglu na metalurgię opartą na wodorze i energii elektrycznej. Zmiana z produkcji stali pierwotnej na wtórną (wykorzystującą złom stalowy) poprawia sytuację, ale nie jest to rozwiązanie zapewniające zaspokojenie rosnącego popytu. Istnieją dwie główne ścieżki technologiczne, które prowadzą do osiągnięcia znaczącej redukcji CO2. Pierwsza z nich to Smart Carbon Usage (SCU). Druga rozwijająca się aktualnie ścieżka zmian technologicznych to bezpośrednie unikanie emisji dwutlenku węgla (CDA). Te i inne rozwijające się metody niskoemisyjnej lub bezemisyjnej metalurgii zostały omówione w artykule. Niestety niektóre z tych metod nie są na tyle rozwinięte, a ich ostateczna komercjalizacja wymaga pokonania wielu problemów.
REFERENCES (64)
1.
Agora 2023. 15 Insights on the global steel transformation. Agora Industry, Wuppertal Institute for Climate, Environment and Energy. 298/03-I-2023/EN, Version: 1.1, June 2023. [Online:] https://static.agora-energiewe... [Accessed: 2024-07-23].
 
2.
Ampofo, K. 2023. Steel decarbonization. The scale of the challenge. The state of the industry. BloombergNEF. [Online:] https://worldsteel.org/wp-cont... [Accessed: 2024-07-22].
 
3.
Andrade et al. 2024 − Andrade, C., Desport, L. and Selosse, S. 2024. Net-negative emission opportunities for the iron and steel industry on a global scale. Applied Energy 358, DOI: 10.1016/j.apenergy.2023.122566.
 
4.
Ariyama, T. 2019. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry. Tetsu to Hagane-Journal oof the Iron and Steel Institute of Japan 105(6), pp. 567–586. DOI: 10.2355/tetsutohagane.TETSU-2019-008.
 
5.
Barati et al. 2011 – Barati, M., Esfahani, S. and Utigard, T.A. 2011. Energy recovery from high temperature slags. Energy 36(9), pp. 5440–5449. DOI: 10.1016/j.energy.2011.07.007.
 
6.
Benson, J. 2022. Industrial decarbonization roadmap. Part 2, Iron and steel. [Online:] https://energycentral.com/syst... [Accessed: 2024-07-20].
 
7.
Bhaskar et al. 2022 – Bhaskar, A., Abhishek, R., Assadi, M. and Somehesaraei, H.N. 2022. Decarbonizing primary steel production: Techno-economic assessment of a hydrogen based green steel production plant in Norway. Journal of Cleaner Production 350, DOI: 10.1016/j.jclepro.2022.131339.
 
8.
Cao et. al. 2024 − Cao, T., Sugiyama, M. and Ju, Y.Y. 2024. Prospects of regional supply chain relocation for iron & steel industry decarbonization: A case study of Japan and Australia. Resources Conservation And Recycling 207, DOI: 10.1016/j.resconrec.2024.107804.
 
9.
Colla et al. 2023 − Colla, V., Branca, T.A., Pietruck, R., Wölfelschneider, S., Morillon, A., Algermissen, D., Rosendahl, S., Granbom, H., Martini, U. and Snaet, D. 2023. Future Research and Developments on Reuse and Recycling of Steelmaking By-Products. Metals 13(4), DOI: 10.3390/met13040676.
 
10.
COM 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal. European Commission. Brussels. COM(2019) 640 Final. 11 December 2019. [Online:] https://eur-lex.europa.eu/lega... [Accessed: 2024-08-22].
 
11.
Conde et al. 2021 – Conde, A.S., Rechberger, K., Spanlang, A., Wolfmeir, H. and Harris, C. 2021. Decarbonization of the steel industry. A techno-economic analysis. Matériaux & Techniques 109(3–4), DOI: 10.1051/mattech/2022002.
 
12.
de Villafranca Casas et al. 2022 – de Villafranca Casas, M.J., Nilsson, A., Smit, S., Beuerle, J. and Kuramochi, T. 2022. Decarbonisation in the global steel sector: tracking the progress. New Climate Institute. [Online:] https://newclimate.org/sites/d... [Accessed: 2024-07-19].
 
13.
Diez et al. 2023 – Diez, J. R., Tomé-Torquemada, S., Vicente, A., Reyes, J. and Orcajo, G.A. 2023. Decarbonization pathways, strategies, and use cases to achieve Net-Zero CO2 emissions in the steelmaking industry. Energies 16(21), DOI: 10.3390/en16217360.
 
14.
Estevez et al. 2024 – Estevez, I., Kassem, H., Kwon, Y. and Paul, I. 2024. The political economy of steel decarbonization prospects and challenges of a green steel transition in Dearborn, Michigan. Working Paper. Roosevelt Institute. March 2024. [Online:] https://rooseveltinstitute.org... [Accessed: 2024-07-22].
 
15.
EUROFER 2019. Low carbon roadmap. Pathways to a CO2-neutral European steel industry. The European Steel Association (EUROFER): Brussels, Belgium, 2019. [Online:] https://www.eurofer.eu/assets/... [Accessed: 2024-08-15].
 
16.
Fan, Z. and Friedmann, S.J. 2021. Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule 5(4), pp. 829–862. DOI: 10.1016/j.joule.2021.02.018.
 
17.
Fivel, J.B. 2019. Achieving a decarbonized European steel industry in a circular economy. Degree project course: Strategies for sustainable development, Second Cycle AL250X, 30 credits. Department of Sustainable Development, Environmental Science and Engineering, School of Architecture and the Built Environment, KTH Royal Institute of Technology. [Online:] http://www.diva-portal.org/sma... [Accessed: 2024-07-22].
 
18.
Gajdzik et al. 2023a – Gajdzik, B., Sujová, E. and Biały, W. 2023. Decarbonisation of the steel industry: theoretical and practical approaches with analysis of the situation in the steel sector in Poland. Acta Montanistica Slovaca 28(3), pp. 621–636. DOI: 10.46544/AMS.v28i3.08.
 
19.
Gajdzik et al. 2023b – Gajdzik, B., Wolniak, R. and Grebski, W. 2023. Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies 16(8), DOI: 10.3390/en16083384.
 
20.
Gajdzik, B. and Kozina, A. 2023. Determinants of restructuring process in deep decarbonization of steel industry in Poland. Scientific papers of Silesian University of Technology Organization and Management Series No. 179. [Online:] https://managementpapers.polsl... [Accessed: 2024-05-24].
 
21.
Gajdzik, B. and Piontek, B. 2023. The strategic challenges of the decarbonisation of the manufacturing industry. Economics and Environment 4(87), pp. 1–28. DOI: 10.34659/eis.2023.87.4.680.
 
22.
Harpprecht et al. 2022 − Harpprecht, C., Naegler, T., Steubing, B., Tukker, A. and Simon, S. 2022. Decarbonization scenarios for the iron and steel industry in context of a sectoral carbon budget: Germany as a case study. Journal of Cleaner Production 380(2), DOI: 10.1016/j.jclepro.2022.134846.
 
23.
Hasanbeigi et. al. 2023 – Hasanbeigi, A., Lu, H. and Zhou, N. 2023. Net-zero roadmap for Chinese steel industry. Lawrence Berkeley National Laboratory, and Global Efficiency Intelligence. LBNL-2001506. [Online:] https://static1.squarespace.co... [Accessed: 2024-07-24].
 
24.
Horst, D.J. and de Andrade, P.P. Júnior. 2023. Sustainability of the steel industry: A systematic review. Biointerface Research in Applied Chemistry 13(6), DOI: 10.33263/BRIAC136.525.
 
25.
IEA 2020. Iron and steel technology roadmap. Towards more sustainable steelmaking. International Energy Agency, Paris. [Online:] https://iea.blob.core.windows.... [Accessed: 2024-08-15].
 
26.
IEA 2022. Achieving net zero heavy industry sectors in G7 Members. International Energy Agency (IEA), Paris. [Online:] https://iea.blob.core.windows.... [Accessed: 2024-08-15].
 
27.
IPCC 2023. Climate change 2023. Synthesis Report (SYR). A Report of the Intergovernmental Panel on Climate Change. ISBN 978-92-9169-164-7. DOI: 10.59327/IPCC/AR6-9789291691647. [Online:] https://www.ipcc.ch/report/ar6... [Accessed: 2024-08-21].
 
28.
IRENA 2023. Towards a circular steel industry. International Renewable Energy Agency (IRENA), Abu Dhabi. [Online:] https://www.irena.org/-/media/... [Accessed: 2024-07-24].
 
29.
Kim et al. 2022 − Kim, J., Sovacool, B.K., Bazilian, M., Griffiths, S., Lee, J., Yang, M.Y. and Lee, J. 2022. Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research & Social Science 80, DOI: 10.1016/j.erss.2022.102565.
 
30.
Kiessling et al. 2022 − Kiessling, S., Darabkhani, H.G. and Soliman, A.H. 2022. The bio steel cycle: 7 steps to net-zero CO2 emissions steel production. Energies 15(23), DOI: 10.3390/en15238880.
 
31.
Koolen, D. and Vidovik, D. 2022. Greenhouse gas intensities of the EU steel industry and its trading partners. Publications Office of the European Union: Luxembourg. DOI: 10.2760/170198, JRC129297.
 
32.
Kurrer, C. 2020. The potential of hydrogen for decarbonising steel production. EPRS (European Parliamentary Research Service), Scientific Foresight Unit (STOA). [Online:] https://www.europarl.europa.eu... [Accessed: 2024-07-19].
 
33.
Lee, H. 2023. Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction. Energy 283, DOI: 10.1016/j.energy.2023.129057.
 
34.
Liu et al 2024 − Liu, D.C., Wang, P., Sun, Y., Zhang, H.W. and Xu, S.Q. 2024. Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios. Renewable & Sustainable Energy Reviews 191, DOI: 10.1016/j.rser.2023.114140.
 
35.
Lopez et al. 2022 − Lopez, G., Farfan, J. and Breyer, C. 2022. Trends in the global steel industry: Evolutionary projections and defossilisation pathways through power-to-steel. Journal of Cleaner Production 375, DOI: 10.1016/j.jclepro.2022.134182.
 
36.
Lundmark et al. 2024 − Lundmark, R., Wetterlund, E. and Olofsson, E. 2024. On the green transformation of the iron and steel industry: Market and competition aspects of hydrogen and biomass options. Biomass & Bioenergy 182, DOI: 10.1016/j.biombioe.2024.107100.
 
37.
Mahat et al. 2023 – Mahat, C., Jibran, J. A., Sharma, N. and Thapa, B. 2023. Challenges and prospects of steel production using green hydrogen in Nepal. Journal of Physics: Conference Series 2629, DOI: 10.1088/1742-6596/2629/1/012026.
 
38.
Mandova et al. 2019 – Mandova, H., Patrizio, P., Leduc, S., Kjärstad, J., Wang, C., Wetterlund, E., Kraxner, F. and Gale, W. 2019. Achieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storage. Journal of Cleaner Production 218, pp. 118–129. DOI: 10.1016/j.jclepro.2019.01.247.
 
39.
Muslemani et al. 2021 – Muslemani, H., Liang, X., Kaesehage, K., Ascui, F. and Wilson, J. 2021. Opportunities and challenges for decarbonizing steel production by creating markets for ‘green steel’ products. Journal of Cleaner Production 315, 128127. DOI: 10.1016/j.jclepro.2021.128127.
 
40.
Ohman et al. 2022 − Ohman, A., Karakaya, E. and Urban, F. 2022.Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe. Energy Research & Social Science 84, DOI: 10.1016/j.erss.2021.102384.
 
41.
Pandit et al. 2020 – Pandit, J. K., Watson, M. and Qader, A. 2020. Reduction of greenhouse gas emissions in steel production. Final Report. March 2020, CO2CRC Report No: RPT20-6205. [Online:] https://meg.resourcesregulator... [Accessed: 2024-07-23].
 
42.
Peters et al. 2019 – Peters, K., Malfa, E. and Colla, V. 2019. The European steel technology platform’s strategic research agenda: a further step for the steel as backbone of EU resource and energy intense industry sustainability. Metallurgia Italiana 5, 5–17. [Online:] http://aimnet.it/la_metallurgi... [Accessed: 2024-10-11].
 
43.
Rocamora, C. 2023. Decarbonizing the steel sector. The role of financial institutions. Reclaim Finance. [Online:] https://reclaimfinance.org/sit... [Accessed: 2024-07-19].
 
44.
Różański et al. 2022 – Różański, P., Borecki, M., Niesler, M., Stecko, J., Szulc, W. and Zdonek, B. 2022. Decarbonisation pathways of the steel industry. Journal of Metallic Materials 74(3–4), pp. 47–60. DOI: 10.32730/imz.2657-747.22.3-4.6.
 
45.
Skoczkowski et al. 2020 – Skoczkowski, T., Verdolini, E., Bielecki, S., Kochański, M., Korczak, K. and Węglarz, A. 2020. Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy 212, pp. 1–21. DOI: 10.1016/j.energy.2020.118688.
 
46.
Suer et al. 2022 – Suer, J., Traverso, M. and Jäger, N. 2022. Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios. Sustainability 14(21), DOI: 10.3390/su142114131.
 
47.
Sun et al. 2022 – Sun, Y., Tian, S., Ciais, P., Zeng, Z., Meng, J. and Zhang, Z. 2022. Decarbonising the iron and steel sector for a 2°C target using inherent waste streams. Nature Communications 13(297), DOI: 10.1038/s41467-021-27770-y.
 
48.
Swalec, C. and Shearer, C. 2021. Pedal to the metal 2021. No time to delay decarbonizing the global steel sector. Global Energy Monitor. Report, June 2021. [Online:] https://globalenergymonitor.or... [Accessed: 2024-08-15].
 
49.
Tautorat et al. 2023 − Tautorat, P., Lalin, B., Schmidt, T.S. and Steffen, B. 2023. Directions of innovation for the decarbonization of cement and steel production – A topic modeling-based analysis. Journal of Cleaner Production 407, DOI: 10.1016/j.jclepro.2023.137055.
 
50.
UK Steel 2022. Net zero steel – a vision for the future of UK steel production. UK Steel July 2022. [Online:] https://www.makeuk.org/about/u... [Accessed: 2024-07-23].
 
51.
UNFCCC 2016. The Paris Agreement. 2016 United Nations Framework Convention on Climate Change (UNFCCC). [Online:] https://unfccc.int/sites/defau... [Accessed: 2024-08-22].
 
52.
Venkataraman et al. 2022 − Venkataraman, M., Csereklyei, Z., Aisbett, E., Rahbari, A., Jotzo, F., Lord, M. and Pye, J. 2022. Zero-carbon steel production: The opportunities and role for Australia. Energy Policy 163, DOI: 10.1016/j.enpol.2022.112811.
 
53.
Wang et al. 2020 − Wang, R.Q., Jiang, L., Wang, Y.D. and Roskilly, A.P. 2020. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. Journal of Cleaner Production 274, DOI: 10.1016/j.jclepro.2020.122997.
 
54.
WEForum 2024. Decarbonizing Brazil’s Steel, Aluminium and Aviation Sectors. White Paper, January 2024. World Economic Forum. [Online:] https://www3.weforum.org/docs/... [Accessed: 2024-07-19].
 
55.
Wimmer et al. 2022 – Wimmer, G., Voraberger, B., Kradel, B. and Fleischander, A. 2022. Breakthrough pathways to decarbonize the steel sector. Mitsubishi Heavy Industries Technical Review 59(4). [Online:] https://www.mhi.co.jp/technolo... [Accessed: 2024-07-20].
 
56.
WiseEuropa 2024a. Transformation of the steel sector. (Transformacja sektora stalowego). WiseEuropa 2024. [Online:] https://wise-europa.eu/2024/02... [Accessed: 2024-08-26].
 
57.
WiseEuropa 2024b. Report: Steel industry in Poland. Sector analysis, challenges, vision of the future. (Raport: Przemysł stalowy w Polsce. Analiza sektora, wyzwania, wizja przyszłości). WiseEuropa 2024. [Online:] https://wise-europa.eu/2024/07... [Accessed: 2024-09-27].
 
58.
WSA 2024. World steel in figures 2024. World Steel Association. [Online:] https://worldsteel.org/data/wo... [Accessed: 2024-08-11].
 
59.
WSD 2023. Global steel industry decarbonization. Report #1: the race to the 2030 starting line. World Steel Dynamics (WSD). [Online:] https://congressoacobrasil.org... [Accessed: 2024-07-20].
 
60.
WTO portal. Trade and climate change. Information brief No. 7. Decarbonization standards and the iron and steel sector how can the WTO support greater coherence? World Trade Organization. [Online:] https://www.wto.org/english/tr... [Accessed: 2024-07-19].
 
61.
Yu et al. 2021 – Yu, S., Lehne, J., Blahut, N. and Charles, M. 2021. 1.5°C Steel: Decarbonizing the steel sector in Paris-compatible pathways. Pacific Northwest National Laboratory, E3G. [Online:] https://www.e3g.org/wp-content... [Accessed: 22 July 2024].
 
62.
Zhang et al. 2013 – Zhang, H., Wang, H., Zhu, X., Qiu, Y.J., Li, K., Chen, R. and Liao, Q. 2013. A review of waste heat recovery technologies towards molten slag in steel industry. Applied Energy 112, pp. 956–966. DOI: 10.1016/j.apenergy.2013.02.019.
 
63.
Zhao et al. 2024 − Zhao, L.T., Chen, Z.Y., Duan, Y.X. and Qiu, R.X. 2024. How will CBAM affect the decarbonisation of steel industry in China? A system dynamics approach. International Journal of Production Research 62(18), pp. 6859–6880. DOI: 10.1080/00207543.2023.2285397.
 
64.
Zou et al. 2024 − Zou, B.K., Zhang, Y.S., Chen, Q.R., Hu, Q.R., Hu, X.Y., Shi, J., Li, Z.S. and Wang, Q. 2024. Low-carbon economic schedule of the H2DRI-EAF steel plant integrated with a power-to-hydrogen system driven by blue hydrogen and green hydrogen. IET Renewable Power Generation. DOI: 10.1049/rpg2.13064.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top