ORIGINAL PAPER
The Characteristics of Saprolitic Nickel Ore from Lateritic Nickel Deposit in the Mandiodo Area, North Konawe, Indonesia
 
More details
Hide details
1
Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
 
2
Mining Engineering Department, Hasanuddin University, Gowa 92171, South Sulawesi, Indonesia
 
3
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
 
 
Submission date: 2025-01-22
 
 
Final revision date: 2025-03-31
 
 
Acceptance date: 2025-04-25
 
 
Publication date: 2025-09-26
 
 
Corresponding author
Ibnu Munzir   

Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(3):45-71
 
KEYWORDS
TOPICS
ABSTRACT
The study of saprolitic nickel ore conducted in the Mandiodo area of North Konawe, Indonesia, reveals a high nickel content. Mineralogical and geochemical analyses from bedrock to saprolite horizon samples reveal the characteristics of the ore as a weathering product from the peridotite bedrock composed mainly of olivine, pyroxene, and serpentine. The results reveal an advanced serpentinization process, indicated by the domination of olivine and serpentine, represented by forsterite and chrysotile, respectively, with a lower amount of enstatite, a member of the pyroxene group, in the bedrock. Further, the abundance of goethite, amphibole, and chlorite mineral groups in the saprock and saprolite indicate an initial stage of weathering. After the weathering of the bedrock, the serpentine is the primary source of Ni in the saprock and saprolite horizon, with a minor occurrence in goethite. Pentlandite is rarely present in the bedrock but is often found with a very high Ni content. In the saprolite ore, the content of Ni hosted by serpentine-group minerals and Fe from goethite increased drastically up to 4.6 and 43.8 wt%, respectively, followed by the drastic depletion of Si and Mg to 7.3 and 3.9 wt%, respectively. The presence of chromite in the saprolite horizon plays a significant role during the enrichment of Cr and Al, and the Mn is hosted by both Mn-oxides and goethite. Geochemical variations in the saprolitic horizon indicate the prospect of future critical metal resources in the study area.
FUNDING
This work has been funded and logistically supported by the “Research Support Module” and the publication has been supported by a grant from the Faculty of Geography and Geology under the Strategic Programme Excellence Initiative at Jagiellonian University. The authors kindly thank Mr. Djamaluddin for his assistance during the sample collection. The authors acknowledge the support from PT. ANTAM – UBPN Konawe Utara for approval of the sample collection. Finally, we thank the anonymous reviewers for their time, comments, and suggestions which much improved the paper.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Charakterystyka rudy niklu saprolitycznego z laterytowego złoża niklu w rejonie Mandiodo, North Konawe, Indonezja
wietrzenie, laterytowe złoże niklu, podłoże skalne, saprolit, serpentynizacja
Badanie rudy niklu saprolitycznego przeprowadzone w rejonie Mandiodo w Okręgu Północnym Konawe w Indonezji wykazało wysoką zawartość niklu. Analizy mineralogiczne i geochemiczne od podłoża skalnego do próbek horyzontu saprolitu ujawniają cechy rudy jako produktu wietrzenia z podłoża perydotytowego składającego się głównie z oliwinu, piroksenu i serpentynu. Wyniki ujawniają zaawansowany proces serpentynizacji, na który wskazuje dominacja oliwinu i serpentynu reprezentowanych odpowiednio przez forsteryt i chryzotyl, z mniejszą ilością enstatytu jako członka grupy piroksenów w podłożu skalnym. Ponadto obfitość grup mineralnych goethytu, amfibolu i chlorytu w saprocie i saprolicie wskazuje na początkowy etap wietrzenia. Po zwietrzeniu podłoża skalnego serpentynit jest głównym źródłem Ni w poziomie saproku i saprolitu, z niewielkim występowaniem w goethycie. Pentlandyt rzadko występuje w podłożu skalnym, ale pojawia się z bardzo wysoką zawartością Ni. W rudzie saprolitu zawartość Ni w minerałach grupy serpentynu i Fe w goethycie wzrosła drastycznie do odpowiednio 4,6 i 43,8% wag., po czym nastąpiło drastyczne wyczerpanie Si i Mg do odpowiednio 7,3 i 3,9% wag. Obecność chromitu w poziomie saprolitu odgrywa znaczącą rolę podczas wzbogacania Cr i Al, a Mn jest obecny zarówno w tlenkach Mn, jak i w goethycie. Zmiany geochemiczne w poziomie saprolitu wskazują na perspektywę przyszłych zasobów metali krytycznych w badanym obszarze.
REFERENCES (61)
1.
Anand, R.R. and Paine, M., 2002. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Australian Journal of Earth Sciences 49, pp. 3–162, DOI: 10.1046/J.1440-0952.2002.00912.X.
 
2.
Bach et al. 2004 – Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M. 2004. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N. Geochemistry, Geophysics, Geosystems 5, pp. 9–26, DOI: 10.1029/2004GC000744.
 
3.
Barnes et al. 2020 – Barnes, S.J., Taranovic, V., Schoneveld, L.E., Mansur, E.T., le Vaillant, M., Dare, S., Staude, S., Evans, N.J. and Blanks, D. 2020. The occurrence and origin of pentlandite-chalcopyrite-pyrrhotite loop textures in magmatic Ni-Cu sulfide ores. Economic Geology 115, pp. 1777–1798, DOI: 10.5382/ECONGEO.4757.
 
4.
Becquer et al. 2003 – Becquer, T., Quantin, C., Sicot, M. and Boudot, J.P., 2003. Chromium availability in ultramafic soils from New Caledonia. Science of The Total Environment, 301: 251–261, DOI: 10.1016/S0048-9697(02)00298-X.
 
5.
Brand et al. 1998 – Brand, N.W., Butt, C.R.M. and Elias, M. 1998. Nickel Laterites: Classifications and Features. AGSO Journal of Australian Geology & Geophysics 17, pp. 81–88.
 
6.
Butt, C.R.M. and Cluzel, D. 2013. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 9, pp. 123–128, DOI: 10.2113/GSELEMENTS.9.2.123.
 
7.
Cathelineau et al. 2016 – Cathelineau, M., Quesnel, B., Gautier, P., Boulvais, P., Couteau, C. and Drouillet, M., 2016. Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Mineralium Deposita 51(2), pp. 271–282, DOI: 10.1007/s00126-015-0607-y.
 
8.
Cornell et al. 1987 – Cornell, R.M., Giovanoli, R. and Schindler, P.W. 1987. Effect of Silicate Species on the Transformation of Ferrihydrite into Goethite and Hematite in Alkaline Media. Clays and Clay Minerals 35, pp. 21–28, DOI: 10.1346/CCMN.1987.0350103.
 
9.
Dalvi et al. 2004 – Dalvi, A.D., Bacon, W.G. and Osborne, R.C. 2004. The Past and the Future of Nickel Laterites. In Proceedings of the PDAC 2004 International Convention, Trade Show & Investors Exchange, Mississauga, ON, Canada, 7–10 March 2004.
 
10.
Dare et al. 2010 – Dare, S.A.S., Barnes, S.J. and Prichard, H.M. 2010. The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni-Cu-PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Mineralium Deposita 45, pp. 765–793, DOI: 10.1007/s00126-010-0295-6.
 
11.
Domènech et al. 2017 – Domènech, C., Galí, S., Villanova-de-Benavent, C., Soler, J.M. and Proenza, J.A. 2017. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba). Mineralium Deposita 52, pp. 993–1010, DOI: 10.1007/s00126-017-0713-0.
 
12.
Domínguez-Carretero et al. 2024 – Domínguez-Carretero, D., Proenza, J. A., Villanova-de-Benavent, C., Aiglsperger, T., Tauler, E., Rojas-Purón, A., Duque, N., González-Jiménez, J.-M., Garcia-Casco, A. and Galí, S. 2024. The Geology, Geochemistry, and Mineralogy of the Moa Bay Ni Laterite Mining District, Cuba. Economic Geology 119, pp. 1685–1706, DOI: 10.5382/ECONGEO.5101.
 
13.
Dublet et al. 2015 – Dublet, G., Juillot, F., Morin, G., Fritsch, E., Fandeur, D. and Brown, G.E. 2015. Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochimica et Cosmochimica Acta 160, pp. 1–15, DOI: 10.1016/J.GCA.2015.03.015.
 
14.
Ece et al. 2013 – Ece, Ö.I., Ekinci, B., Schroeder, P.A., Crowe, D. and Esenli, F. 2013. Origin of the Düvertepe kaolin–alunite deposits in Simav Graben, Turkey: Timing and styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research 255, pp. 57–78, DOI: 10.1016/J.JVOLGEORES.2013.01.012.
 
15.
Elias, M. 2002. Nickel Lateritic Deposits-Geological Overview, Resources and Exploitation. [In:] Giant Ore Deposits: Characteristics, genesis and exploration, eds DR Cooke, D.R. and Pongratz, J. CODES Special Publication 4, Centre for Ore Deposit Research, University of Tasmania, pp. 205–220.
 
16.
Eliopoulos et al. 2012 – Eliopoulos, D.G., Economou-Eliopoulos, M., Apostolikas, A. and Golightly, J.P. 2012. Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geology Reviews 48, pp. 413–427, DOI: 10.1016/J.OREGEOREV.2012.05.008.
 
17.
Evans et al. 2013 – Evans, B.W., Hattori, K. and Baronnet, A. 2013. Serpentinite: What, Why, Where? Elements 9(2), pp. 99–106, DOI: 10.2113/GSELEMENTS.9.2.99.
 
18.
Fendorf, S.E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67, pp. 55–71, DOI: 10.1016/0016-7061(94)00062-F.
 
19.
Freyssinet et al. 2005 – Freyssinet, P.H., Butt, C.R.M., Morris, R.C. and Piantone, P. 2005. Ore-Forming Processes Related to Lateritic Weathering. [In:] Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.W. One Hundredth Anniversary Volume. Society of Economic Geologist, Canada, pp. 681–722, DOI: 10.5382/AV100.21.
 
20.
Fu et al. 2014 – Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H. and Huang, X. 2014. Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. Journal of Asian Earth Sciences 93, pp. 74–88, DOI: 10.1016/J.JSEAES.2014.06.030.
 
21.
Gerth, J. 1990. Unit-cell dimensions of pure and trace metal-associated goethites. Geochimica et Cosmochimica Acta 54, pp. 363–371, DOI: 10.1016/0016-7037(90)90325-F.
 
22.
Golightly, J.P., 1981. Nickeliferous Laterite Deposits. Economic Geology, Seventy-Fifth Anniversary Volume (1905– –1980), pp. 710–734, DOI: 10.5382/AV75.18.
 
23.
Golightly, J.P. and Arancibia, O.N. 1979. The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine form a nickeliferous laterite profile, Soroako, Indonesia. Can Mineral 17, pp. 719–728.
 
24.
Hall, R. and Wilson, M.E.J. 2000. Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences 18, pp. 781–808, DOI: 10.1016/S1367-9120(00)00040-7.
 
25.
Helvaci et al. 2018 – Helvaci, C., Oyman, T., Gündoğan, İ., Sözbilir, H., Parlak, O., Kadir, S. and Güven, N. 2018. Mineralogy and genesis of the Ni–Co lateritic regolith deposit of the Çaldağ area (Manisa, western Anatolia), Turkey. Canadian Journal of Earth Sciences 55, pp. 252–271, DOI: 10.1139/cjes-2017-0184.
 
26.
Herdianita et al. 2000 – Herdianita, N.R., Browne, P.R.L., Rodgers, K.A. and Campbell, K.A. 2000. Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita 35, pp. 48–62, DOI: 10.1007/s001260050005.
 
27.
Irfan et al. 2021 – Irfan, U., Maulana, A. and Muhammad, F. 2021. Role of bedrock serpentinization on the development of nickel laterite deposit in Sorowako, Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science 921, DOI: 10.1088/1755-1315/921/1/012028.
 
28.
Kadarusman et al. 2004 – Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C.D. and Ishikawa, A. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 392, pp. 55–83, DOI: 10.1016/J.TECTO.2004.04.008.
 
29.
Klein et al. 2015 – Klein, F., Grozeva, N.G., Seewald, J.S., McCollom, T.M., Humphris, S.E., Moskowitz, B., Berquó, T.S. and Kahl, W.A. 2015. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. American Mineralogist 100, pp. 991–1002, DOI: 10.2138/AM-2015-5112.
 
30.
Konopka et al. 2022 – Konopka, G., Szamałek, K. and Zglinicki, K. 2022. Ni-Co Bearing Laterites from Halmahera Island (Indonesia). Applied Sciences 12(15), DOI: 10.3390/APP12157586.
 
31.
Lamadrid et al. 2017 – Lamadrid, H.M., Rimstidt, J.D., Schwarzenbach, E.M., Klein, F., Ulrich, S., Dolocan, A. and Bodnar, R.J. 2017. Effect of water activity on rates of serpentinization of olivine. Nature Communications 8, pp. 1–9, DOI: 10.1038/ncomms16107.
 
32.
Malvoisin et al. 2012 – Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S. and Cannat, M. 2012. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. Journal of Geophysical Research: Solid Earth 117, DOI: 10.1029/2011JB008842.
 
33.
Marker et al. 1991 – Marker, A., Friedrich, G., Carvalho, A. and Melfi, A. 1991. Control of the distribution of Mn, Co, Zn, Zr, Ti and REEs during the evolution of lateritic covers above ultramafic complexes. Journal of Geochemical Exploration 40, pp. 361–383, DOI: 10.1016/0375-6742(91)90048-Y.
 
34.
Martin, B. and Fyfe, W.S. 1970. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chemical Geology 6, pp. 185–202, DOI: 10.1016/0009-2541(70)90018-5.
 
35.
Mével, C. 2003. Serpentinisation of abyssal peridotite at mid ocean ridges. Comptes Rendus Geoscience 335, pp. 825–852, DOI: 10.1016/j.crte.2003.08.006.
 
36.
Monnier et al. 1995 – Monnier, C., Girardeau, J., Maury, R. and Cotton, J. 1995. Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology 23, pp. 851–854, DOI: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2.
 
37.
Myagkiy et al. 2017 – Myagkiy, A., Truche, L., Cathelineau, M. and Golfier, F. 2017. Revealing the conditions of Ni mineralization in the laterite profiles of New Caledonia: Insights from reactive geochemical transport modelling. Chemical Geology 466, pp. 274–284, DOI: 10.1016/J.CHEMGEO.2017.06.018.
 
38.
Pagé, P. and Barnes, S.J. 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology 104, pp. 997–1018, DOI: 10.2113/ECONGEO.104.7.997.
 
39.
Pagé et al. 2012 – Pagé, P., Barnes, S.J., Bédard, J.H. and Zientek, M.L. 2012. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite, and boninite magmas: Implications for chromite control of Os, Ir, and Ru during partial melting and crystal fractionation. Chemical Geology 302–303, pp. 3–15, DOI: 10.1016/J.CHEMGEO.2011.06.006.
 
40.
Parkinson, C. 1998. Emplacement of the East Sulawesi Ophiolite: evidence from subophiolite metamorphic rocks. Journal of Asian Earth Sciences 16, pp. 13–28, DOI: 10.1016/S0743-9547(97)00039-1.
 
41.
Pelletier, B. 1996. Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy Publication Series – Nickel Conference 6, pp. 197–205.
 
42.
Quantin et al. 2002 – Quantin, C., Becquer, T. and Berthelin, J. 2002. Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus Geoscience 334, pp. 273–278, DOI: 10.1016/S1631-0713(02)01753-4.
 
43.
Roqué-Rosell et al. 2010 – Roqué-Rosell, J., Mosselmans, J.F.W., Proenza, J.A., Labrador, M., Galí, S., Atkinson, K.D. and Quinn, P.D. 2010. Sorption of Ni by “lithiophorite–asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chemical Geology 275, pp. 9–18, DOI: 10.1016/J.CHEMGEO.2010.04.006.
 
44.
Santoro et al. 2022 – Santoro, L., Putzolu, F., Mondillo, N., Boni, M. and Herrington, R. 2022. Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, new data and implications for ore forming processes. Ore Geology Reviews 140, DOI: 10.1016/J.OREGEOREV.2021.104501.
 
45.
Schellmann, W. 1994. Geochemical differentiation in laterite and bauxite formation. CATENA 21, pp. 131–143, DOI: 10.1016/0341-8162(94)90007-8.
 
46.
Schwertmann, U. and Murad, E. 1983. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals 31(4), pp. 277–284, DOI: 10.1346/CCMN.1983.0310405.
 
47.
Schwertmann, U. and Taylor, R.M. 1989. Iron oxides. [In:] Dixon, J.B. and Weed, S.B. (eds.), Minerals in Soil Environments. Soil Science Society of America, Madison, Wis. pp. 379–438.
 
48.
Singh et al. 2002 – Singh, B., Sherman, D.M., Gilkes, R.J., Wells, M.A. and Mosselmans, J.F.W. 2002. Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): mechanism from extended X-ray absorption fine structure spectroscopy. Clay Minerals 37, pp. 639–649, DOI: 10.1180/00985502374066.
 
49.
Soh Tamehe et al. 2024 – Soh Tamehe, L., Zhao, Y., Xu, W. and Gao, J. 2024. Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals 14(2), DOI: 10.3390/MIN14020134.
 
50.
Streckeisen, A.L. 1973. Plutonic rocks, classification and nomenclature recommended by the IUGS subcommission on the systematics of igneous rocks. Geotimes 18, pp. 26–30.
 
51.
Staude et al. 2023 – Staude, S., Scharrer, M., Markl, G., Simon, I., Pfaff, K., Monecke, T. and Blanc, P. 2023. Hydrothermal Pentlandite (Ni,Fe)9S8 from Kambalda, Western Australia: Occurrences, Formation Conditions, and Association with Orogenic Gold. The Canadian Journal of Mineralogy and Petrology 61, pp. 239–271, DOI: 10.3749/2200032.
 
52.
Tauler et al. 2017 – Tauler, E., Lewis, J.F., Villanova-de-Benavent, C., Aiglsperger, T., Proenza, J.A., Domènech, C., Gallardo, T., Longo, F. and Galí, S. 2017. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of “hybrid hydrous Mg silicate – clay silicate” type Ni-laterite. Mineralium Deposita 52, pp. 1011–1030, DOI: 10.1007/s00126-017-0750-8.
 
53.
Thorne et al. 2009 – Thorne, R., Herrington, R. and Roberts, S. 2009. Composition and origin of the Çaldaǧ oxide nickel laterite, W. Turkey. Mineralium Deposita 44, pp. 581–595, DOI: 10.1007/S00126-009-0234-6.
 
54.
Ulrich et al. 2019 – Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.C., Teitler, Y. and Karpoff, A.M. 2019. The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. Journal of Geochemical Exploration 197, pp. 93–113, DOI: 10.1016/J.GEXPLO.2018.11.017.
 
55.
Villanova-de-Benavent et al. 2014 – Villanova-de-Benavent, C., Proenza, J. A., Galí, S., García-Casco, A., Tauler, E., Lewis, J.F. and Longo, F. 2014. Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geology Reviews 58, pp. 91–109, DOI: 10.1016/J.OREGEOREV.2013.10.008.
 
56.
Villanova-de-Benavent et al. 2019 – Villanova-de-Benavent, C., Jawhari, T., Roqué-Rosell, J., Galí, S. and Proenza, J.A. 2019. Ni-bearing phyllosilicates (“garnierites”): New insights from thermal analysis, μRaman and IR spectroscopy. Applied Clay Science 175, pp. 47–66, DOI: 10.1016/J.CLAY.2019.03.036.
 
57.
Wegner, W.W. and Ernst, W.G. 1983, Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O, American Journal of Science 283, pp. 151–180.
 
58.
Wells et al. 2022 – Wells, M.A., Ramanaidou, E.R., Zakaria Quadir, M., Roberts, M., Bourdet, J. and Verrall, M. 2022. Morphology, composition and dissolution of chromite in the Goro lateritic nickel deposit, New Caledonia: Insight into ophiolite and laterite genesis. Ore Geology Reviews 143, DOI: 10.1016/J.OREGEOREV.2022.104752.
 
59.
White et al. 2014 – White, L.T., Hall, R. and Armstrong, R.A. 2014. The age of undeformed dacite intrusions within the Kolaka Fault zone, SE Sulawesi, Indonesia. Journal of Asian Earth Sciences 94, pp. 105–112, DOI: 10.1016/J.JSEAES.2014.08.014.
 
60.
Wulandari et al. 2020 – Wulandari, W., Kinda, M.M., Murida, R. and Samadhi, T.W. 2020. The Effect of Alkali Roasting Pretreatment on Nickel Extraction from Limonite Ore by Using Dissolved SO2-Air. Minerals 10, pp. 701–713, DOI: 10.3390/MIN10080701.
 
61.
Zhang et al. 2020 – Zhang, Y., Qie, J., Wang, X. F., Cui, K., Fu, T., Wang, J. and Qi, Y. 2020. Mineralogical Characteristics of the Nickel Laterite, Southeast Ophiolite Belt, Sulawesi Island, Indonesia. Mining, Metallurgy and Exploration 37, pp. 79–91, DOI: 10.1007/S42461-019-00147-Y.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top