ORIGINAL PAPER
The effect of hard coal fly ash substitution for cement on properties of high sulphide tailings cemented paste backfill
More details
Hide details
2
Istanbul Technical University
Submission date: 2024-12-03
Final revision date: 2025-01-27
Acceptance date: 2025-05-17
Publication date: 2025-12-16
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(4):193-217
KEYWORDS
TOPICS
ABSTRACT
Cemented paste backfill (CPB) is a method used to fill the gaps in the underground production method. The main component of CPB is cement, which costs a high price. Therefore, some studies have continued in the search for materials to replace cement. In this context, the mechanical behavior of the material obtained following the substitution of ore preparation plant tailings from Kastamonu-Küre copper mine instead of cement using thermal power plant fly ash (FA) in certain proportions by weight was investigated. The results indicate that substituting FA in all cement proportions increases the compressive strength of the CBP mixtures. Up to 20% of the amount and cost of cement has been saved by using FA instead of portland cement (PC). Thus, there is an opportunity for a reduction in the amount of CO2 emissions, a greenhouse gas, from the cement production process.
Besides, an economic income was provided to the enterprise by reusing coal thermal power plant waste. As a result, significant benefits have been provided to the mining sector in terms of operation, environment, and cost.
FUNDING
This study was funded by Istanbul University-Cerrahpaşa with the project number FDK-2018-24707.
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Wpływ zastąpienia cementu popiołem lotnym z węgla kamiennego na właściwości cementowanej pasty wypełniającej odpady wysokosiarkowe
odpady miedziowe, wysoka zawartość siarki, popiół lotny z węgla kamiennego, cement, cementowane wypełnienie pastowe (CPB)
Wypełnianie cementową pastą (CPB) to metoda stosowana do wypełniania szczelin w podziemnej metodzie wydobycia. Głównym składnikiem CPB jest cement, który charakteryzuje się wysoką ceną. W związku z tym kontynuowano badania nad poszukiwaniem materiałów, które mogłyby go zastąpić. W tym kontekście zbadano zachowanie mechaniczne materiału uzyskanego w wyniku zastąpienia odpadów z zakładu przeróbki rudy w kopalni miedzi Kastamonu-Küre zamiast cementu popiołem lotnym (FA) z elektrowni cieplnej w określonych proporcjach wagowych. Wyniki wskazują, że zastąpienie FA we wszystkich proporcjach cementu zwiększa wytrzymałość na ściskanie mieszanek CBP. Dzięki zastosowaniu FA zamiast cementu portlandzkiego (PC) zaoszczędzono do 20% ilości i kosztów cementu. Stwarza to możliwość zmniejszenia emisji CO2, gazu cieplarnianego, powstającego w procesie produkcji cementu. Ponadto ponowne wykorzystanie odpadów z elektrowni węglowej przyniosło przedsiębiorstwu korzyści ekonomiczne. W rezultacie sektor górniczy odniósł znaczące korzyści pod względem działalności, środowiska i kosztów.
REFERENCES (102)
1.
Adiguzel et al. 2022 – Adiguzel, D., Tuylu, S. and Eker, H. 2022. Utilization of tailings in concrete products: A review. Construction and Building Materials 360, DOI: 10.1016/j.conbuildmat.2022.129574.
2.
Adrianto, L.R. and Pfister, S. 2022. Prospective environmental assessment of reprocessing and valorization alternatives for sulfidic copper tailings. Resources, Conservation and Recycling, 186, DOI: 10.1016/j.resconrec.2022.106567.
3.
Aldhafeeri, Z. and Fall, M. 2017. Sulphate induced changes in the reactivity of cemented tailings backfill. International Journal of Mineral Processing 166, DOI: 10.1016/j.minpro.2017.06.007.
4.
Alhomair et al. 2017 – Alhomair, S.A., Gorakhki, M.H. and Bareither, C.A. 2017. Hydraulic Conductivity of Fly Ash-Amended Mine Tailings. Geotechnical and Geological Engineering 35(1), DOI: 10.1007/s10706-016-0101-z.
5.
Amaratunga, L.M. and Hein, G.G. 1997. Development of a high strength total tailings paste fill using fine sulphide mill tailings. Proceedings of the 29th Annual Conference of the Canadian Mineral Processor (CIMCMP), pp. 293–305.
6.
Ghorbanpour A.B. and Yu, X. 2020. Application of Fly Ash to Improve the Mechanical Properties of Paste Tailings. Geo-Congress 2020 GSP 316 289, 289–298.
7.
ASTM C39/C39M-18 (2018). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. DOI: 10.1520/C0039_C0039M-18.
8.
Bascetin et al. 2023 – Bascetin, A., Tuylu, S. and Adiguzel, D. 2023. Investigation of optimal surface paste disposal design based on crack intensity. International Journal of Mining, Reclamation and Environment 37(8), DOI: 10.1080/17480930.2023.2232987.
9.
Been et al. 2002 – Been, K., Brown, E.T. and Hepworth, N. 2002. Liquefaction potential of paste fill at Neves Corvo mine, Portugal. Mining Technology 111(1), DOI: 10.1179/mnt.2002.111.1.47.
10.
Behera et al. 2020 – Behera, S.K., Ghosh, C.N., Mishra, D.P., Singh, P., Mishra, K., Buragohain, J. and Mandal, P.K. 2020. Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder. Cement and Concrete Composites 109(February), DOI: 10.1016/j.cemconcomp.2020.103553.
11.
Belem, T. and Benzaazoua, M. 2008. Design and Application of Underground Mine Paste Backfill Technology. Geotechnical and Geological Engineering 26(2), DOI: 10.1007/s10706-007-9154-3.
12.
Belem et al. 2000 – Belem, T., Benzaazoua, M. and Bussière, B. 2000. Mechanical behaviour of cemented paste backfill. Proc. of 53rd Canadian Geotechnical Conference, Montreal, pp. 373–380.
13.
Benzaazoua et al. 1994 – Benzaazoua, M., Ouellet, J., Servant, S., Newman, P. and Verburg, R. 1999. Cementitious backfill with high sulfur content Physical, chemical, and mineralogical characterization. Cement and Concrete Research 29(5), DOI: 10.1016/S0008-8846(99)00023-X.
14.
Benzaazoua et al. 2002 – Benzaazoua, M., Belem, T. and Bussière, B. 2002. Chemical factors that influence the performance of mine sulphidic paste backfill. Cement and Concrete Research 32(7), DOI: 10.1016/S0008-8846(02)00752-4.
15.
Benzaazoua et al. 2004 – Benzaazoua, M., Fall, M. and Belem, T. 2004. A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering 17(2), DOI: 10.1016/j.mineng.2003.10.022.
16.
Brackebusch, F.W. 1995. Basics of paste backfill systems. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 3(32), 122A.
17.
CAN/CSA-A3000-03 – 2003. Cementitious Materials Compendium.
18.
Cavusoglu et al. 2021a – Cavusoglu, I., Yilmaz, E. and Yilmaz, A.O. 2021a. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures. Construction and Building Materials 267, DOI: 10.1016/j.conbuildmat.2020.121021.
19.
Cavusoglu et al. 2021b – Cavusoglu, I., Yilmaz, E. and Yilmaz, A.O. 2021b. Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill. Powder Technology 384, DOI: 10.1016/j.powtec.2021.02.013.
20.
Chen et al. 2022 – Chen, S., Xiang, Z. and Eker, H. 2022. Curing Stress Influences the Mechanical Characteristics of Cemented Paste Backfill and Its Damage Constitutive Model. Buildings 12(10), DOI: 10.3390/buildings12101607.
21.
Cihangir, F. and Akyol, Y. 2018. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. International Journal of Mining, Reclamation and Environment 32(2), DOI: 10.1080/17480930.2016.1242183.
22.
Cihangir et al. 2011 – Cihangir, F., Erçıkdı, B., Turan, A., Kesimal, A., Deveci, H. and Karaoğlu, K. 2011. Utilisation of sodium silicate activated blast furnace slag as an alternative binder in paste backfill of high-sulphide mill tailings. Proceedings of the 14th International Seminar on Paste and Thickened Tailings, pp. 465–475.
23.
Cihangir et al. 2012 – Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A. and Deveci, H. 2012. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Minerals Engineering 30, DOI: 10.1016/j.mineng.2012.01.009.
24.
Cihangir et al. 2015 – Cihangir, F., Ercikdi, B., Kesimal, A., Deveci, H. and Erdemir, F. 2015. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Minerals Engineering 83, DOI: 10.1016/j.mineng.2015.08.022.
25.
Cui et al. 2020 – Cui, B., Liu, Y., Feng, G., Bai, J., Du, X., Wang, C. and Wang, H. 2020. Experimental study on the effect of fly ash content in cemented paste backfill on its anti-sulfate erosion. International Journal of Green Energy 17(12), DOI: 10.1080/15435075.2020.1791877.
26.
De Souza et al. 2003 – De Souza, E., Archibald, J. F. and Dirige, A. 2003. Economics and perspectives of underground backfill practices in Canadian mining. 105th Annual General Meeting of the Canadian Institute of Mining, Metallurgy and Petroleum. Montreal.
27.
Değirmenci, N. and Okucu, A. 2007. Usability of fly ash and phosphogypsum in manufacturing of building products. Pamukkale University Journal of Engineering Sciences 13(2).
28.
Demir et al. 2024 – Demir, İ., Adiguzel, D., Tuylu, S. and Ozkan, S.G. 2024. Investigation of the effects of coal properties, environmental conditions, and costs on coal drying method selection using multi-criteria decision-making method (AHP). Physicochemical Problems of Mineral Processing, DOI: 10.37190/ppmp/193741.
29.
Demir Şahin et al. 2020 – Demir Şahin, D., Çullu, M. and Eker, H. 2020. The effect of different fineness values of Afşin Elbistan fly ash on permeability in concrete. Challenge Journal of Structural Mechanics 6(2), DOI: 10.20528/cjsmec.2020.02.004.
30.
Demir Şahin, D. and Eker, H. 2024. Effects of Ultrafine Fly Ash against Sulphate Reaction in Concrete Structures. Materials 17(6), DOI: 10.3390/ma17061442.
31.
Eker, H. 2019. Determination of optimum design parameters in deposition of metalic process tailings by paste backfill method, Istanbul University-Cerrahpasa. Institute of Graduate Studies, Department of Mining Engineering, p. 252, İstanbul.
32.
Eker, H. and Bascetin, A. 2022a. Influence of silica fume on mechanical property of cemented paste backfill. Construction and Building Materials 317, DOI: 10.1016/j.conbuildmat.2021.126089.
33.
Eker, H. and Bascetin, A. 2022b. The study of strength behaviour of zeolite in cemented paste backfill. Geomechanics and Engineering 29(4), 421–434.
34.
Eker et al. 2023 – Eker, H., Demir Şahin, D. and Çullu, M. 2023. Effect of Reduced Fineness of Fly Ash Used on the Alkali–Silica Reaction (ASR) of Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, DOI: 10.1007/s40996-023-01090-1.
35.
Ercikdi et al. 2013 – Ercikdi, B., Baki, H. and İzki, M. 2013. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill. Journal of Environmental Management 115, DOI: 10.1016/j.jenvman.2012.11.014.
36.
Ercikdi et al. 2009a – Ercikdi, B., Cihangir, F., Kesimal, A. and Deveci, H. 2017. Practical Importance of Tailings for Cemented Paste Backfill. Paste Tailings Management (pp. 7–32). Springer International Publishing, DOI: 10.1007/978-3-319-39682-8_2.
37.
Ercikdi et al. 2009b – Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, İ. 2009b. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. Journal of Hazardous Materials 168(2–3), DOI: 10.1016/j.jhazmat.2009.02.100.
38.
Ercikdi et al. 2009c – Ercikdi, B., Kesimal, A., Cihangir, F., Deveci, H. and Alp, İ. 2009c. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cement and Concrete Composites 31(4), DOI: 10.1016/j.cemconcomp.2009.01.008.
39.
Ercikdi et al. 2010a – Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, Ì. 2010a. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings. Waste Management and Research 28(5), DOI: 10.1177/0734242X09351905.
40.
Ercikdi et al. 2010b – Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, İ. 2010b. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. Journal of Hazardous Materials 179(1–3), DOI: 10.1016/j.jhazmat.2010.03.096.
41.
Ercikdi, B., Külekci, G. and Yılmaz, T. 2015. Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, 573–583.
https://doi.org/10.1016/j.conb....
42.
Ercikdi et al. 2014 – Ercikdi, B., Yılmaz, T. and Külekci, G. 2014. Strength and ultrasonic properties of cemented paste backfill. Ultrasonics 54(1), DOI: 10.1016/j.ultras.2013.04.013.
43.
Esmailzadeh et al. 2023 – Esmailzadeh, S., Bakhtavar, E., Mokhtarian-Asl, M., Sadiq, R. and Hewage, K. 2023. Mathematical modelling of waste rock management through incorporating open-pit waste rocks in underground stope filling: An environmental approach. Resources Policy 85, DOI: 10.1016/j.resourpol.2023.103885.
44.
Fall, M. and Benzaazoua, M. 2003. Advances in predicting performance properties and cost of paste backfill. Talings and Mine Waste’03, pp. 73–85.
45.
Fall, M. and Benzaazoua, M. 2005. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cement and Concrete Research 35(2), DOI: 10.1016/j.cemconres.2004.05.020.
46.
Fall, M. and Samb, S.S. 2008. Pore structure of cemented tailings materials under natural or accidental thermal loads. Materials Characterization 59(5), DOI: 10.1016/j.matchar.2007.05.003.
47.
Fall et al. 2010 – Fall, M., Célestin, J. C., Pokharel, M. and Touré, M. 2010. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Engineering Geology 114(3–4), DOI: 10.1016/j.enggeo.2010.05.016.
48.
Ghirian, A. and Fall, M. 2014. Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments. Engineering Geology 170, DOI: 10.1016/j.enggeo.2013.12.004.
49.
Ghirian, A. and Fall, M. 2016. Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage. International Journal of Mining Science and Technology 26(5), DOI: 10.1016/j.ijmst.2016.05.039.
50.
Godbout et al. 2007 – Godbout, J., Bussière, B., Aubertin, M., Belem, T. 2007. Evolution of cemented past backfill saturated hydraulic conductivity at early curing time. Diamond Jubilee Canadian Geotechnical Conference and the 8th Joint CGS/IAH-CNC Groundwater Conference.
51.
Gorakhki, M.H. and Bareither, C.A. 2017. Unconfined Compressive Strength of Synthetic and Natural Mine Tailings Amended with Fly Ash and Cement. Journal of Geotechnical and Geoenvironmental Engineering 143(7), DOI: 10.1061/(asce)gt.1943-5606.0001678.
52.
Gorakhki, M.H. and Bareither, C.A. 2018. Compression Behavior of Mine Tailings Amended with Cementitious Binders. Geotechnical and Geological Engineering 36(1), DOI: 10.1007/s10706-017-0299-4.
53.
Grice, T. 1998. Underground mining with backfill. 2nd Annual Summit œ Mine Tailings Disposal Systems, Brisbane, Nov, 24–25.
54.
Hassani et al. 2001 – Hassani, F.P., Ouellet, J. and Hossein, M. 2001. Strength development in underground high-sulphate paste backfill operation. CIM Bulletin, pp. 57–62.
55.
Hassani et al. 2007 –Hassani, F.P., Nokken, M.R., Annor, A.B. 2007. Physical and mechanical behaviour of various combinations of mine fill materials. CIM Bulletin 2(3), 72 p.
56.
Ji et al. 2022 – Ji, X., Gu, X., Wang, Z., Xu, S., Jiang, H. and Yilmaz, E. 2022. Admixture Effects on the Rheological/Mechanical Behavior and Micro-Structure Evolution of Alkali-Activated Slag Backfills. Minerals 13(1), DOI: 10.3390/min13010030.
57.
Jiang et al. 2019a – Jiang, H., Fall, M., Li, Y. and Han, J. 2019a. An experimental study on compressive behaviour of cemented rockfill. Construction and Building Materials 213, DOI: 10.1016/j.conbuildmat.2019.04.061.
58.
Jiang et al. 2019b – Jiang, H., Qi, Z., Yilmaz, E., Han, J., Qiu, J. and Dong, C. 2019b. Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills. Construction and Building Materials 218, DOI: 10.1016/j.conbuildmat.2019.05.162.
59.
Jiang et al. 2020a – Jiang, H., Fall, M., Yilmaz, E., Li, Y. and Yang, L. 2020a. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technology 372, DOI: 10.1016/j.powtec.2020.06.009.
60.
Jiang et al. 2020b – Jiang, H., Fall, M., Yilmaz, E., Li, Y. and Yang, L. 2020b. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technology 372, DOI: 10.1016/j.powtec.2020.06.009.
61.
Jiang et al. 2020c – Jiang, H., Yi, H., Yilmaz, E., Liu, S. and Qiu, J. 2020c. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature. Ultrasonics 100(August 2019), DOI: 10.1016/j.ultras.2019.105983.
62.
Kasap et al. 2022 – Kasap, T., Yilmaz, E. and Sari, M. 2022. Effects of mineral additives and age on microstructure evolution and durability properties of sand-reinforced cementitious mine backfills. Construction and Building Materials 352, DOI: 10.1016/j.conbuildmat.2022.129079.
63.
Kesimal et al. 2005 – Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I. and Deveci, H. 2005. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Materials Letters 59(28), DOI: 10.1016/j.matlet.2005.06.042.
64.
Klein, K. and Simon, D. 2006. Effect of specimen composition on the strength development in cemented paste backfill. Canadian Geotechnical Journal 43(3), DOI: 10.1139/t06-005.
65.
Landriault, D. 1995. Paste backfill mix design for Canadian underground hard rock mining. 97th Annual General Meeting of CIM. Rock Mechanics and Strata Control Session. Halifax, Nova Scotia, pp. 238–239.
66.
Le Roux et al. 2004 – Le Roux, K., Bawden, W.F. and Grabinsky, M.W. 2004. Liquefaction analysis of early age cemented paste backfill. Proceedings of the 8th International Symposium on Mining with Backfill, Beijing, China, pp. 19–21.
67.
Li, W. and Fall, M. 2016. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Construction and Building Materials 106, DOI: 10.1016/j.conbuildmat.2015.12.124.
68.
Manca et al. 1983 – Manca, P.P., Massacci, G., Massidda, L. and Rossi, G. 1983. Mill tailings and various binder mixtures for cemented backfill: analysis of properties related to mining problems. Proceedings 3rd International Symposium on Mining with Backfill, pp. 39–47.
69.
Naylor et al. 1997 – Naylor, J., Farmery, R.A. and Tenbergen, R.A. 1997. Paste backfill at the Macassa mine with flash paste production in a paste production and storage mechanism. Proceedings 29th Annual Meeting of the Canadian Mineral Processors, Ottawa, Ontario, January, 21–23.
70.
Ouattara et al. 2018 – Ouattara, D., Mbonimpa, M., Yahia, A. and Belem, T. 2018. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Construction and Building Materials 190, DOI: 10.1016/j.conbuildmat.2018.09.066.
71.
Pokharel, M. and Fall, M. 2011. Coupled Thermochemical Effects on the Strength Development of Slag-Paste Backfill Materials. Journal of Materials in Civil Engineering 23(5), DOI: 10.1061/(ASCE)MT.1943-5533.0000192.
72.
Qi et al. 2015 – Qi, T., Feng, G., Zhang, Y., Guo, J. and Guo, Y. 2015. Effects of Fly Ash Content on Properties of Cement Paste Backfilling. Journal of Residuals Science and Technology 12(3), DOI: 10.12783/issn.1544-8053/12/3/3.
73.
Ramlochan et al. 2004 – Ramlochan, T., Thomas, M.D.A. and Hooton, R.D. 2004. The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature. Cement and Concrete Research 34(8), DOI: 10.1016/j.cemconres.2003.12.026.
74.
Ravindra, K.D. 1986. Pulverized-fuel ash. Concrete Technology and Design, Cement Replacement Materials 3.
75.
Salé et al. 1997 – Salé, L.Y., Chanasyk, D.S. and Naeth, M.A. 1997. Temporal influence of fly ash on select soil physical properties. Canadian Journal of Soil Science 77(4), DOI: 10.4141/S96-078.
76.
Sari et al. 2022 – Sari, M., Yilmaz, E., Kasap, T. and Guner, N.U. 2022. Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures. Construction and Building Materials 328, DOI: 10.1016/j.conbuildmat.2022.127109.
77.
Sari et al. 2023 – Sari, M., Yilmaz, E., Kasap, T. and Karasu, S. 2023. Exploring the link between ultrasonic and strength behavior of cementitious mine backfill by considering pore structure. Construction and Building Materials 370, DOI: 10.1016/j.conbuildmat.2023.130588.
78.
Shon, C.S. and Kim, Y.S. 2013. Evaluation of West Texas natural zeolite as an alternative of ASTM Class F fly ash. Construction and Building Materials 47, DOI: 10.1016/j.conbuildmat.2013.04.041.
79.
Singh et al. 2019 – Singh, P., Ghosh, C.N., Behera, S.K., Mishra, K., Kumar, D., Buragohain, J. and Mandal, P.K. 2019. Optimisation of binder alternative for cemented paste fill in underground metal mines. Arabian Journal of Geosciences 12(15), DOI: 10.1007/s12517-019-4623-6.
80.
Sun et al. 2019 – Sun, Q., Tian, S., Sun, Q., Li, B., Cai, C., Xia, Y., Wei, X. and Mu, Q. 2019. Preparation and microstructure of fly ash geopolymer paste backfill material. Journal of Cleaner Production 225, DOI: 10.1016/j.jclepro.2019.03.310.
81.
Sun et al. 2018 – Sun, Q., Zhang, J. and Zhou, N. 2018. Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results. Arabian Journal for Science and Engineering 43(4), DOI: 10.1007/s13369-017-2654-4.
82.
Tariq, A. and Nehdi, M. 2007. Developing durable paste backfill from sulphidic tailings. Proceedings of the Institution of Civil Engineers – Waste and Resource Management 160(4), DOI: 10.1680/warm.2007.160.4.155.
83.
Tuylu, S. 2021. Effect of different particle size distribution of zeolite on the strength of cemented paste backfill. International Journal of Environmental Science and Technology, DOI: 10.1007/s13762-021-03659-7.
84.
Tuylu, S. 2022a. Investigation of the Effect of Using Different Fly Ash on the Mechanical Properties in Cemented Paste Backfill. Journal of Wuhan University of Technology-Mater. Sci. Ed. 37(4), DOI: 10.1007/s11595-022-2576-1.
85.
Udd, J.E. and Annor, A. 1993. Backfill research in Canada. Proceedings, Fifth International Symposium on Mining with Backfill 361–368.
86.
Wang et al. 2020 – Wang, C., Wang, C., Xiong, Z., Wang, Y. and Han, Y. 2020. Experimental study of high-flow and low-expansion backfill material. PLoS ONE 15(8), DOI: 10.1371/journal.pone.0236718.
87.
Weaver, W.S. and ve Luka, R. 1970. Laboratory Studies of Cement-stabilized Mine Tailings. Canadian Mining and Metallurgical Bulletin 64(701).
88.
Yao, Y. and Sun, H. 2012. A novel silica alumina-based backfill material composed of coal refuse and fly ash. Journal of Hazardous Materials 213–214, DOI: 10.1016/j.jhazmat.2012.01.059.
89.
Yilmaz, E. 2018. Stope depth effect on field behaviour and performance of cemented paste backfills. International Journal of Mining, Reclamation and Environment 32(4), DOI: 10.1080/17480930.2017.1285858.
90.
Yilmaz, E. and Guresci, M. 2017. Design and Characterization of Underground Paste Backfill. Paste Tailings Management (pp. 111–143). Springer International Publishing, DOI: 10.1007/978-3-319-39682-8_5.
91.
Yıldız, T.D. 2020. Waste management costs (WMC) of mining companies in Turkey: Can waste recovery help meeting these costs? Resources Policy 68, DOI: 10.1016/j.resourpol.2020.101706.
92.
Yıldız, T.D. 2024. Considering the development levels of countries, contributions of mineral recovery from mining tailings and urban mining wastes to sustainability criteria – A review. Resources Policy 99, DOI: 10.1016/j.resourpol.2024.105399.
93.
Yıldız, T.D. and Tombal-Kara, T.D. 2024. Challenges and recovery opportunities in waste management during the mining and enrichment processes of ores containing uranium and thorium – a review. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 40(1), DOI: 10.24425/gsm.2024.149305.
94.
Yıldız et al. 2017 – Yılmaz, T., Erçıkdı, B. and Cihangir, F. 2017. Effect of the Partial Replacement of Blast Furnace Slag and Perlite on the Mechanical and Microstructural Properties of Cemented Paste Backfill. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32(2), DOI: 10.21605/cukurovaummfd.358429.
95.
Yıldız et al. 2018 – Yılmaz, T., Ercikdi, B. and Deveci, H. 2018. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Journal of Environmental Management 222, DOI: 10.1016/j.jenvman.2018.05.075.
96.
Yıldız et al. 2020 – Yılmaz, T., Ercikdi, B. and Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill. Journal of Environmental Management 258 (July 2019), DOI: 10.1016/j.jenvman.2019.110037.
97.
Yıldız et al. 2024 – Yıldız, T.D., Güner, M.O. and Kural, O. 2024. Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes. Resources Policy 90, DOI: 10.1016/j.resourpol.2024.104836.
98.
Yu, T.R. and Counter, D.B. 1988. Use of fly ash in backfill at Kidd Creek Mines. CIM Bulletin 81(909), pp. 44–50.
99.
Zhang et al. 2017 – Zhang, X., Lin, J., Liu, J., Li, F. and Pang, Z. 2017. Investigation of Hydraulic-Mechanical Properties of Paste Backfill Containing Coal Gangue-Fly Ash and Its Application in an Underground Coal Mine. Energies 10(9), DOI: 10.3390/en10091309.
100.
Zhao et al. 2019a – Zhao, Y., Soltani, A., Taheri, A., Karakus, M. and Deng, A. 2019a. Application of slag–cement and fly ash for strength development in cemented paste backfills. Minerals 9(1), DOI: 10.3390/min9010022.
101.
Zhao et al. 2019b – Zhao, Y., Taheri, A., Soltani, A., Karakus, M. and Deng, A. 2019b. Strength development and strain localization behavior of cemented paste backfills using Portland cement and fly ash. Materials 12(20), DOI: 10.3390/ma12203282.
102.
Zhou et al. 2019 – Zhou, N., Ma, H., Ouyang, S., Germain, D. and Hou, T. 2019. Influential Factors in Transportation and Mechanical Properties of Aeolian Sand-Based Cemented Filling Material. Minerals 9(2), DOI: 10.3390/min9020116.