The possibilities of application of modified carbonaceous materials in the reaction of nitrogen oxides removal from outgases from stationary sources
 
More details
Hide details
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2007;23(Zeszyt specjalny 1):119–132
 
KEYWORDS
ABSTRACT
The discussion of the modification of carbonaceous materials as possible catalysts for the removal of nitrogen oxides from outgases was carried out. A special attention was paid to: (1) the modification of surface functionalities (oxygen-and nitrogen-surface groups), (2) promotion with transition metal oxides/hydroxides and (3) the influence of the presence of SO2 and H2O in outgases.
METADATA IN OTHER LANGUAGES:
Polish
Możliwości zastosowania modyfikowanych materiałów węglowych w reakcji usuwania tlenków azotu z gazów odlotowych ze źródeł stacjonarnych
tlenek azotu, materiały węglowe
W pracy przedstawiono dyskusję badań nad modyfikacją materiałów węglowych w aspekcie ich możliwego zastosowania jako katalizatorów selektywnej redukcji tlenku azotu amoniakiem. Szczególną uwagę poświęcono: (1) modyfikacji grup powierzchniowych (grupy tlenowe i azotowe), (2) promowaniu tlenkami/wodorotlenkami metali d-elektronowych, oraz (3) wpływowi obecności SO2 i H2O w gazach odlotowych.
 
REFERENCES (39)
1.
Bandosz T.J., Buczek B., Grzybek T., Jagiełło J., 1997 – The determination of surface changes in active carbons by potentiometric titration and water vapour adsorption. Fuel, 76, s. 1409.
 
2.
Bartholomew C.H., 2001 – Mechanisms of catalyst deactivation. Appl. Catal. A 212, s. 17.
 
3.
Biniak S., Szymański G., Siedlewski J., Świątkowski A., 1997 – The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 35, s. 1799.
 
4.
Boudou J.P., 2003 – Surface chemistry of a viscose-based activated carbon cloth modified by treatment with ammonia and steam. Carbon, 41, s. 1955.
 
5.
García-Bordejé E., Pinilla J.L., Lázaro M.J., Moliner R., 2006 – NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2 traces in the gas feed. Appl.Catal. B., 66, s. 281.
 
6.
Grzybek T., Klinik J., Motak M., Papp H., 2007b – Nitrogen-promoted active carbons as catalytic supports.1. The influence of Mn promotion on the structure and catalytic properties in SCR. Proc. Int. Symposium AWPA, Zakopane 21–23.06.2007, s. 17.
 
7.
Grzybek T., Klinik J., Samojeden B., Suprun V., Papp H., 2007a – Nitrogen–promoted active carbons as DeNOx catalysts. 1. The Influence of Different Modification Parameters on the Structure and Catalytic Properties. Proc. Int. Symposium AWPA 2007, Zakopane 21–23.06.2007, s. 79.
 
8.
Grzybek T., Pasel J., Papp H., 1999 – Supported Manganese Catalyst for the Selective Catalytic reduction of nitrogen Oxides with Ammonia. Part II. Catalytic Experiments. Phys. Chem. Chem. Phys., 1, s. 341.
 
9.
Hagen J., 2006 – Industrial catalysis: a practical approach (Wyd. 2nd, compl. rev. and extended ed.) Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA.
 
10.
Heck R.M., Farrauto R. J., 1995 – Catalytic Air Pollution Control. Commercial Technology, ed. Van Nostrand Reinhold, Thompson Publ. Cp., New York.
 
11.
Hsu L-Y., Teng H., 2001 – Catalytic NO reduction with NH3 Over carbonsmodified by acid oxidation and metal impregnation and its kinetic studies. Appl. Catal. B, 35, s. 21.
 
12.
Huang M-C., Teng H., 2003 – Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3. Carbon 41, s. 951.
 
13.
Huang Z., Zhu Z., Liu Z., 2002 – Combined Effect of H2O and SO2 on V2O5/AC Catalysts for NO Reduction with Ammonia at Lower Temperatures. Appl. Ctal. B., 39, s. 361.
 
14.
Jansen R.J.J., van Bekkum H., 1994 – Amination and ammoxidation of Activated Carbons. Carbon, 32, s. 1507.
 
15.
Jüntgen H., Kühl H., 1989 – Mechanisms and Physical Properties of Carbon Catalysts for Flue Gas Cleaning. Chemistry and physics of Carbon, 22, s. 145.
 
16.
Klijstra W.S., Daamen J.C.M.L., Van de Graaf J.M., Vander Linden B., Poels E.K., Bliek A., 1996 – Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl.Catal B, 7, s. 337.
 
17.
Komatsubara Y., Ida S., Fujitsu H., Mochida I., 1984 – Catalytic Activity of PAN-based Active Carbon Fiber (PAN-ACF) Actuivated with Sulphuric Acid for Reduction of Nitric Oxide with Ammonia. Fuel, 63, s. 1738.
 
18.
Ku B.J., Lee J.K., Park D., Rhee H.-K., 1994 – Treatment of Activated Carbon To Enhance Catalytic Activity for Reduction of Nitric Oxide with Ammonia. Ind. Eng. Chem. Res., 33, s. 2868.
 
19.
Lázaro M.J., Boyano A., Gálvez M.E., Bordejé E.G., Ruiz C., Juan R., Moliner R., 2007 – Synthesis and characterization of novel carbon based catalysts for the reduction of NO. Proc. Int. Symposium AWPA 2007, Zakopane 21–23.06.2007, s. 19.
 
20.
Marban G., Antuna R., Fuertes A.B., 2003 – Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides. Appl. Catal.B, 41, s. 323.
 
21.
Marban G., Fuertes A.B., 2001a – Low-temperature SCR of NOx with NH3 over Nomex rejects-based activated carbon fibre composite-supported manganese oxides: Part I. Effect of pre-conditioning of the carbonaceous support. Appl. Catal. B, 34, s. 43.
 
22.
Marban G., Fuertes A.B., 2001b – Low-temperature SCR of NOx with NH3 over NomexTM rejects-based activated carbon fiber composite-supported manganese oxides: Part II. Effect of procedures for impregnation and active phase formation. Appl. Catal. B, 34, s. 55.
 
23.
Matzner S., Boehm H.P., 1998 – Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon, 36, s. 1697.
 
24.
Mochida I., Korai Y., Shirama M., Kawano S., Hada T., Seo Y., Yoshikawa M., Yasutake A., 2000, – Removal of SOx and NOx over activated carbon fibers. Carbon, 38, s. 227.
 
25.
Muniz J., Marban G., Fuertes A.B., 1999 – Low temperature selective catalytic reduction of NO over polyarylamide-based carbon fibres. Appl. Catal. B, 23, s. 25.
 
26.
Muniz J., Marban G., Fuertes A.B., 2000 – Low temperature Selective Catalytic Reduction of NO over modified activated carbon Fiber. Appl. Catal. B., 27, s. 27.
 
27.
Pasel J., Käßner P., Montanari B., Gazzano M., Vaccari A., Makowski W., Łojewski T., Dziembaj R., Papp H., 1998 – Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Appl. Catal. B, 18, s. 199.
 
28.
Ochrona i inżynieria środowiska – zrównoważony rozwój. Red.: Lucjan Pawłowski et al., Kraków, Komitet Inżynierii Środowiska PAN, 2004, s. 97.
 
29.
Singoredjo L., Kapteijn F., Moulijn J. A., Martin-Martinez J-M., Boehm H.-P., 1993 – Modified Activated Carbons for the Selective Catalytic Reduction of NO with NH3. Carbon, 31, 213.
 
30.
Szymański G., Grzybek T., Papp H., 2004 – Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3. Catal. Today, 90, 51.
 
31.
Teng H., Tu Y-T., Lai Y-C., Lin C-C., 2001 – Reduction of NO with NH3 over carbon catalysts: The effects of treating carbon with H2SO4 and HNO3. Carbon, 39, 575.
 
32.
Yang Ch.-M., Kaneko K., 2002 – Nitrogen-Doped Activated Carbon Fiber as an Applicant for NO Adsorbent. J.Colloid and Interface Science, 255, 236.
 
33.
Yoshikawa M., Yasutake A., Mochida I., 1998 – Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers. Appl. Catal. A, 173, s. 239.
 
34.
Zhu Z., Liu Z., Liu S., Niu H, 1999a – A novel Carbon-Supported Vanadium Oxide catalyst for NO Reduction with NH3 at Low Temperatures. Appl. Catal.B, 23, s. L229.
 
35.
Zhu Z., Liu Z., Liu S., Niu H., Hu T., Liu T., Xie Y., 2000a – NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal.B, 26, s. 25.
 
36.
Zhu Z., Liu Z., Niu H., Liu S., 1999b – Promotional Effect of SO2 on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH3 at Low Temperatures. J. Catal., 187, s. 245.
 
37.
Zhu Z., Liu Z., Niu H., Liu S., 2000b – Decomposition and Reactivity of NH4HSO4 on V2O5/AC Catalysts Used for NO Reduction with Ammonia. J.Catal., 195, s. 268.
 
38.
Zhu Z., Liu Z., Niu H., Liu S., Hu T., Liu T., Xie Y., 2001 – Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-Supported Vanadium Oxide Catalyst. J.Catal., 197, s. 6.
 
39.
Zhu Z.H., Radovic L. R., Lu G. Q, 2000 – Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon, 38, s. 451.
 
eISSN:2299-2324
ISSN:0860-0953