REVIEW PAPER
Will the resource potential of critical raw materials used in electric cars in Turkey be sufficient for the domestic automobile factory? – A review
More details
Hide details
1
Adana Alparslan Türkeş Science And Technology University, Department of Mining Engineering
Submission date: 2024-04-16
Final revision date: 2024-08-06
Acceptance date: 2024-12-17
Online publication date: 2024-12-20
Corresponding author
Taşkın Deniz Yıldız
Adana Alparslan Türkeş Science And Technology University, Department of Mining Engineering
KEYWORDS
TOPICS
ABSTRACT
Considering the security problem experienced in the world in the supply of critical raw materials within the scope of energy transformation, it would be extremely strategic for countries to operate electric car (EV) factories from their domestic resources. A factory was opened in Bursa on 29/10/2022 for the production of “TOGG”, an electrically powered domestic automobile in Turkey, established by “Turkey’s Automobile Initiative Group” (TOGG). It is curious whether this electric car factory can meet the raw materials it needs in the presence of raw material supply risks worldwide. At this point, it can be considered that the supply from domestic sources gives a raw material supply assurance compared to the foreign supply. In this study, the supply risks of the minerals used in producing electric cars in Turkey were determined, and suggestions were presented to policymakers in this regard. Many metals and minerals are used in EV production. In this study, only lithium, nickel, cobalt, manganese, graphite, and REEs, declared critical in the EU critical raw materials list, have been analyzed in Turkey, considering their potential in the world. In the analysis, without examining the market of the mentioned minerals, the safety of the raw material supply of the TOGG electric car production factory, which is the only one in Turkey with the potential to supply the world, is discussed from domestic sources in Turkey. Considering the TOGG factory operating life and the capacity of the Li-battery factory, an evaluation was made on how many EVs the current apparent reserve potential of the raw materials in question would be enough to produce in total.
ACKNOWLEDGEMENTS
Author Dr. Taşkın Deniz Yıldız would like to thank Mr. Sait Uysal for his important contributions to the article. (Mr. Uysal is a competent person registered with UMREK and JORC, and he works as General Manager of Spil Mining Ltd, Manisa, Turkey).
CONFLICT OF INTEREST
The Author have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
minerały krytyczne, samochód elektryczny, pierwiastki ziem rzadkich, ryzyko dostaw, bezpieczeństwo dostaw
Biorąc pod uwagę występujący na świecie problem bezpieczeństwa w zakresie dostaw surowców krytycznych w zakresie transformacji energetycznej, niezwykle strategiczne dla krajów byłoby prowadzenie fabryk samochodów elektrycznych (EV) z własnych zasobów. 29.10.2022 r. w Bursie otwarto fabrykę produkującą w Turcji „TOGG”, samochód domowy zasilany elektrycznie, założoną przez „Turkey’s Automobile Initiative Group” (TOGG). Zastanawiające, czy ta fabryka samochodów elektrycznych będzie w stanie zaspokoić zapotrzebowanie na surowce w obliczu zagrożeń związanych z dostawami surowców na całym świecie. W tym miejscu można uznać, że zaopatrzenie ze źródeł krajowych daje pewność dostaw surowca w porównaniu z podażą zagraniczną. W badaniu określono ryzyko związane z dostawami minerałów wykorzystywanych do produkcji samochodów elektrycznych w Turcji i przedstawiono decydentom sugestie w tym zakresie. Do produkcji pojazdów elektrycznych wykorzystuje się wiele metali i minerałów. W niniejszym badaniu przeanalizowano jedynie lit, nikiel, kobalt, mangan, grafit i REE, uznane za krytyczne na unijnej liście surowców krytycznych, pod kątem ich potencjału na świecie. W analizie, bez badania rynku wymienionych minerałów, omówiono bezpieczeństwo dostaw surowca do fabryki samochodów elektrycznych TOGG, która jako jedyna w Turcji ma potencjał zaopatrywania świata, ze źródeł krajowych w Turcji. Biorąc pod uwagę żywotność fabryki TOGG i wydajność fabryki akumulatorów Li, oszacowano, ile pojazdów elektrycznych można w sumie wyprodukować przy obecnym pozornym potencjale rezerw omawianych surowców.
REFERENCES (221)
1.
Açık, D. 2020. Eti Maden started to produce lithium carbonate at its facility in Eskişehir. Anadolu Agency, news dated 2020-12-09. [Online:]
https://www.aa.com.tr/tr/turki....
2.
Akgök, Y.Z. and Şahiner, M. 2017. Lithium in the world and in Turkey. General Directorate of Mineral Research and Exploration, Department of Feasibility Studies.
3.
Andersson et al. 2017 – Andersson, M., Söderman, M.L. and Sandén, B.A. 2019. Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling. Resources Policy 63, DOI: 10.1016/j.resourpol.2019.101403.
4.
Ari, Y.O. 2020. A general outlook on the global electric car market. Kirklareli University Journal of Social Sciences 4(2), pp. 193–203, DOI: 10.47140/kusbder.714905.
5.
Armstrong et al. 2016 – Armstrong, M., D’Arrigo, R., Petter, C. and Galli, A. 2016. How resource-poor countries in Asia are securing stable long-term reserves: Comparing Japan’s and South Korea’s approaches. Resources Policy 47, pp. 51–60, DOI: 10.1016/j.resourpol.2015.12.001.
9.
Bach et al. 2017 – Bach, V., Finogenova, N., Berger, M., Winter, L. and Finkbeiner, M. 2017. Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany. Resources Policy 53, pp. 283–299, DOI: 10.1016/j.resourpol.2017.07.003.
10.
Barteková, E. and Kemp, R. 2016. National strategies for securing a stable supply of rare earths in different world regions. Resources Policy 49, pp. 153–164, DOI: 10.1016/j.resourpol.2016.05.003.
11.
Będowska-Sójka, B. and Górka, J. 2022. The lithium and oil markets – dependencies and volatility spillovers. Resources Policy 78, DOI: 10.1016/j.resourpol.2022.102901.
12.
Benchmark Mineral Intelligence 2019. Battery raw material supply chains in the age of the megafactories. US Dept of Energy Roundtable, NREL, 25 September 2019.
13.
Bide et al. 2020 – Bide, T., Brown, T.J., Gunn, A.G. and Mankelow, J.M. 2020. Utilisation of multiple current and legacy datasets to create a national minerals inventory: A UK case study. Resources Policy 66, DOI: 10.1016/j.resourpol.2020.101654.
14.
Bide et al. 2022 – Bide, T., Brown, A.G. and Deady, G.E. 2022. Development of decision-making tools to create a harmonised UK national mineral resource inventory using the United Nations Framework Classification. Resources Policy 76, DOI: 10.1016/j.resourpol.2022.102558.
16.
Całus-Moszko, J. and Białecka, B. 2013. Analysis of the possibilities of rare earth elements obtaining from coal and fly ash. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29 (1), pp. 67–80, DOI: 10.2478/gospo-2013-0007.
17.
Campbell, G.A. 2014. Rare earth metals: a strategic concern. Mineral Economics 27, pp. 21–31, DOI: 10.1007/s13563-014-0043-y,.
18.
Campbell, G.A. 2020. The cobalt market revisited. Mineral Economics 33 (1), pp. 21–28, DOI: 10.1007/s13563-019-00173-8.
19.
Careddu et al. 2018 – Careddu, N., Dino, G.A., Danielsen, S.W. and Přikryl, R. 2018. Raw materials associated with extractive industry: An overview. Resources Policy 59, pp. 1–6, DOI: 10.1016/j.resourpol.2018.09.014.
20.
Castillo et al. 2023 – Castillo, E., del Real, I. and Roa, C. 2023. Critical minerals versus major minerals: A comparative study of exploration budgets. Mineral Economics 37, DOI: 10.1007/s13563-023-00388-w.
21.
Celep et al. 2023 – Celep, O., Yazici, E.Y., Deveci, H. and Dorfling, C. 2023. Recovery of lithium, cobalt and other metals from lithium-ion batteries. Pamukkale University Journal of Engineering Sciences 29(4), pp. 384–400, DOI: 10.5505/pajes.2022.98793.
22.
Černý et al. 2021 – Černý, I., Vaněk, M., Maruszewska, E.W. and Beneš, F. 2021. How economic indicators impact the EU internal demand for critical raw materials. Resources Policy 74, DOI: 10.1016/j.resourpol.2021.102417.
23.
Çağatay et al. 1982 – Çağatay, A., Pehlivanoğlu, H. and Altun, Y. 1982. Cobalt-gold minerals in küre pyritic copper deposits (Kastamonu Province, N Turkey) and their economic values. MTA Journal 93/94, pp. 110–117. [Online:]
https://dergi.mta.gov.tr/dosya....
24.
Çekiç, M. 2023. The story of copper from the solar system to the information age (News from Turkey). Mining Turkey Magazine 109, pp. 96–112. [Online:]
https://madencilikturkiye.com/....
25.
Çelebi, M.N. and Dönmez, C. 2018. Lithium: The sought-after material of the battery industry. Natural Resources and Economics Bulletin 25, pp. 27–30. [Online:]
https://www.mta.gov.tr/dosyala....
27.
Çetiner et al. 2015 – Çetiner, Z.S., Doğan, Ö., Özdilek, G. and Erdoğan, P.Ö. 2015. Toward utilizing geothermal waters for cleaner and sustainable production: Potential of Li recovery from geothermal brines in Turkey. International Journal of Global Warming 7(4), pp. 439–453, DOI: 10.1504/IJGW.2015.070045.
28.
Çimen, O. 2021. Rare earth elements, strategic raw material source of advanced technology: Current situation and future projection in Turkey. Webinar 2021-10-14, Presented by Assoc. Prof. Dr. Okay Çimen. Organized by the Association of Mining Geologists.
29.
Demirkan, H. 2018. National Resource and Reserves Reporting Committee of Turkey (UMREK) Process of Turkey (Dated June 2018) and Workshops Notes, (January 26–27, 2017 and August 25, 2017 Workshop), 1st Edition, Ankara. [Online:]
http://madencilikturkiye.com/w....
30.
Deng et al. 2021 – Deng, S., Prodius, D., Nlebedim, I.C., Huang, A., Yih, Y. and Sutherland, J.W. 2021. A dynamic price model based on supply and demand with application to techno-economic assessments of rare earth element recovery Technologies. Sustainable Production and Consumption 27, pp. 1718–1727, DOI: 10.1016/j.spc.2021.04.013.
32.
Doğankaya, İ.H. 2020. Turkey’s first lithium-ion battery production facility is being established. (Mining news from Turkey). Turkish Miners Association (TMD), Sector News Bulletin 83, pp. 27. [Online:]
https://www.tmder.org.tr/modul....
33.
Dönmez, F. 2020a. Fatih Dönmez: “We can establish a test production facility to recover lithium from boron (News from Turkey). Mining Turkey Magazine 85. [Online:]
https://www.mtmagaza.com/wp-co....
34.
Dönmez, F. 2020b. Fatih Dönmez: “Eti Maden will produce lithium as a result of its R&D study” (News from Turkey). Mining Turkey Magazine 88, 28. [Online:]
https://madencilikturkiye.com/....
35.
Dönmez, F. 2022. Minister Dönmez: ~60 million barrels of petroleum equivalent reserves have been brought to our country with this year’s discoveries (Mining news from Turkey). TMD Sector News Bulletin, 88, pp. 38–40. [Online:]
https://www.tmder.org.tr/modul....
36.
Durdak, A. 2020. TOGG’s battery will provide a longer range than its competitors. Anatolia Agency, news dated 26/10/2020. [Online:]
https://www.aa.com.tr/tr/ekono....
37.
Durmaz et al. 2021 – Durmaz, A., Demir, H. and Sezen, B. 2021. The role of negative entropy within supply chain sustainability. Sustainable Production and Consumption 28, pp. 218–230, DOI: 10.1016/j.spc.2021.04.014.
38.
Edahbi et al. 2019 – Edahbi, M., Plante, B. and Benzaazoua, M. 2019. Environmental challenges and identification of the knowledge gaps associated with REE mine wastes management. Journal of Cleaner Production 212, pp. 1232–1241, DOI: 10.1016/j.jclepro.2018.11.228.
39.
Ehsani, A. and Kesimal, A. 2015. Okyanus ve denizaltı madenciliğine kısa bir bakış (A brief introduction to marine mining). 24th International Mining Congress and Exhibition (April 14–17), Antalya, Turkey, pp. 436–447.
40.
Ehsani, A. and Sivrikaya, O. 2018. Okyanus ve deniz altı madenciliğinin kısa tarihçesi (A brief history of ocean and undersea mining). Karaelmas Science and Engineering Journal 8 (1), pp. 396–402, DOI: 10.7212%2Fzkufbd.v8i1.1002.
41.
EC 2020. Critical Raw Materials for Strategic Technologies and Sectors in the EU – A Foresight Study (2020). DOI: 10.2873/865242.
42.
Ergin, Y. 2014. Industrial raw materials. Quoted from (İlhan et al. 2020).
43.
Ergünalp, D. 2014. The “giga” battery facility that Tesla will build excited lithium and graphite manufacturers (Industrial minerals for short). YMGV, Sector Mining Journal 51, pp. 16. [Online:]
https://ymgv.org.tr/uploads/de....
44.
Ergünalp, D. 2021. Green light for Nouveau Monde’s graphite project (World News). YMGV, Sector Mining Journal 78, pp. 55. [Online:]
https://ymgv.org.tr/dergi-471-....
45.
Ergünalp, D. and Yalçın, T. 2019. Cobalt concern of German car manufacturers (Industrial news). YMGV, Sector Mining Journal 72, pp. 59. [Online:]
https://ymgv.org.tr/uploads/de....
46.
Ericsson et al. 2023 – Ericsson, M., Löf, A., Löf, O. and Müller, D.B. 2023. Cobalt: corporate concentration 1975– –2018. Mineral Economics, DOI: 10.1007/s13563-023-00391-1.
48.
Espinoza, A.T. 2021. Critical appraisal of recycling indicators used in European criticality exercises and circularity monitoring. Resources Policy 73, DOI: 10.1016/j.resourpol.2021.102208.
52.
Galos et al. 2018 – Galos, K., Tiess, G., Kot-Niewiadomska, A., Murguia, D. and Wertichová, B. 2018. Mineral Deposits of Public Importance (MDoPI) in relation to the Project of the National Mineral Policy of Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34(4), pp. 5–24, DOI: 10.24425/122594.
53.
Gałaś et al. 2024 – Gałaś, A., Krzak, M. and Szlugaj, J. 2024. Niobium-a critical and conflict raw material of great economic significance-the state of the art. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 40(2), pp. 47–67. DOI: 10.24425/gsm.2024.150827.
54.
García et al. 2017 – García, M.V.R., Krzemień, A., del Campo, M.A.M., Álvarez, M.M. and Gent, M.R. 2017. Rare earth elements mining investment: It is not all about China. Resources Policy 53, 66–76, DOI: 10.1016/j.resourpol.2017.05.004.
55.
Gebhardt et al. 2022 – Gebhardt, M., Beck, J., Kopyto, M. and Spieske, A. 2022. Determining requirements and challenges for a sustainable and circular electric vehicle battery supply chain: A mixed-methods approach. Sustainable Production and Consumption 33, pp. 203–217, DOI: 10.1016/j.spc.2022.06.024.
56.
General Directorate of Industry. 2020. Rare Earth Elements Industry Report (2020). Ministry of Industry and Technology, Turkish Republic. [Online:]
https://www.sanayi.gov.tr/asse....
57.
Gidarakos, E. and Akcil, A. 2020. WEEE under the prism of urban mining. Waste Management, 102, pp. 950–951, DOI: 10.1016/j.wasman.2019.11.039.
58.
Gleich et al. 2013 – Gleich, B., Achzet, B., Mayer, H. and Rathgeber, A. 2013. An empirical approach to determine specific weights of driving factors for the price of commodities – A contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy 38(3), pp. 350–362, DOI: 10.1016/j.resourpol.2013.03.011.
59.
Glöser et al. 2015 – Glöser, S., Espinoza, L.T., Gandenberger, C. and Faulstich, M. 2015. Raw material criticality in the context of classical risk assessment. Resources Policy 44, pp. 35–46, DOI: 10.1016/j.resourpol.2014.12.003.
60.
Goel et al. 2021 – Goel, P., Sharma, N., Mathiyazhagan, K. and Vimal, K.E.K. 2021. Government is trying but consumers are not buying: A barrier analysis for electric vehicle sales in India. Sustainable Production and Consumption 28, pp. 71–90, DOI: 10.1016/j.spc.2021.03.029.
61.
Golev et al. 2014 – Golev, A., Scott, M., Erskine, P.D., Ali, S.H. and Ballantyne, G.R. 2014. Rare earths supply chains: Current status, constraints and opportunities. Resources Policy 41, pp. 52–59, DOI: 10.1016/j.resourpol.2014.03.004.
62.
Göçmen-Polat et al. 2023 – Göçmen-Polat, E.G., Yücesan, M. and Gül, M. 2023. A comparative framework for criticality assessment of strategic raw materials in Turkey. Resources Policy 82, DOI: 10.1016/j.resourpol.2023.103511.
63.
Gökkoyun, S.C. 2021. Minister Varank: With TOGG, the world giant FARASIS will start its 20 GWh battery investment in Gemlik soon. Anatolia Agency, news dated 2021-11-03. [Online:]
https://www.aa.com.tr/tr/ekono....
64.
Griffin et al. 2019 – Griffin, G., Gaustad, G. and Badami, K. 2019. A framework for firm-level critical material supply management and mitigation. Resources Policy 60, pp. 262–276, DOI: 10.1016/j.resourpol.2018.12.008.
65.
Grohol, M. and Veeh, C. 2023. Study on the Critical Raw Materials for the EU 2023 Final Report. European Commission, Brussels, DOI: 10.2873/725585.
66.
Gulley, A.L. 2022. One hundred years of cobalt production in the Democratic Republic of the Congo. Resources Policy 79, DOI: 10.1016/j.resourpol.2022.103007.
67.
Guo et al. 2022 – Guo, Z., Li, T., Shi, B. and Zhang, H. 2022. Economic impacts and carbon emissions of electric vehicles roll-out towards 2025 goal of China: An integrated input-output and computable general equilibrium study. Sustainable Production and Consumption 31, pp. 165–174, DOI: 10.1016/j.spc.2022.02.009.
68.
Guo et al. 2023 – Guo, W., Huang, J., Chen, W. and Ahmad, M. 2023. Heterogeneous factors ınfluencing electric vehicle acceptance: Application of structural equation modeling. World Electric Vehicle Journal 14(5), DOI: 10.3390/wevj14050125.
69.
Guzik et al. 2022 – Guzik, K., Burkowicz, A. and Szlugaj, J. 2022. The EU’s demand for selected critical raw materials used in photovoltaic industry. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(2), pp. 31–59, DOI: 10.24425/gsm.2022.141666.
71.
Gümüşsoy et al. 2023 – Gümüşsoy, A., Başyi̇ği̇t, M. and Kart, E.U. 2023. Economic potential and environmental impact of metal recovery from copper slag flotation tailings. Resources Policy 80, DOI: 10.1016/j.resourpol.2022.103232.
72.
Helbig et al. 2016 – Helbig, C., Wietschel, L., Thorenz, A. and Tuma, A. 2016. How to evaluate raw material vulnerability – An overview. Resources Policy 48, pp. 13–24, DOI: 10.1016/j.resourpol.2016.02.003.
73.
Helvaci et al. 2004 – Helvaci, C., Mordogan, H., Çolak, M. and Gundogan, I. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of West-Central Turkey. International Geology Review 46(2), pp. 177–190.
74.
Hoffman, M.R. 1975. Geothermal Research Study in the Salton Sea Region of California. Environmental Quality Laboratory, California Institute of Technology, CA, USA.
75.
Hodgkinson, J.H. and Smith, M.H. 2021. Climate change and sustainability as drivers for the next mining and metals boom: The need for climate-smart mining and recycling. Resources Policy 74, DOI: 10.1016/j.resourpol.2018.05.016.
76.
Hou et al. 2023 – Hou, J., Li, G., Ling, J., Chen, L., Zhao, W. and Sheng, B. 2023. Mineral investment risk assessment of host countries based on a cloud matter-element model. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(4), pp. 23–48, DOI: 10.24425/gsm.2023.148160.
77.
Humphreys, D. 2013. New mercantilism: A perspective on how politics is shaping world metal supply. Resources Policy 38(3), pp. 341–349, DOI: 10.1016/j.resourpol.2013.05.003.
78.
Hund et al. 2020 – Hund, K., La Porta, D., Fabregas, T.P., Laing, T. and Drexhage, J. 2020. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. The World Bank, Climate-Smart Mining Facility, Washington, USA. [Online:]
https://pubdocs.worldbank.org/....
79.
İçli, M.Y. 2020. Electric vehicles, their development and importance in terms of environment and mining. Mining Bulletin 141, pp. 39–46. [Online:]
https://www.maden.org.tr/resim....
84.
İlhan et al. 2020 – İlhan, A., Sarı, R. and Çörtenlioğlu, Y.Y. 2020. Hidden graphite resources in Turkey: a New supply candidate for Europe? European Federation of Geologist, May 2020. [Online:]
https://eurogeologists.eu/sari...).
87.
IMMIB 2022. Status, management and future of cobalt deposits. Istanbul Minerals and Metals Exporters Association (IMMIB). [Online:]
https://www.imib.org.tr/links/....
88.
Islam et al. 2022 – Islam, M.M., Sohag, K. and Alam, M.M. 2022. Mineral import demand and clean energy transitions in the top mineral-importing countries. Resources Policy 78, DOI: 10.1016/j.resourpol.2022.102893.
89.
Islam et al. 2023 – Islam, M.M., Sohag, K. and Mariev, O. 2023. Geopolitical risks and mineral-driven renewable energy generation in China: A decomposed analysis. Resources Policy 80, DOI: 10.1016/j.resourpol.2022.103229.
90.
Jaroni et al. 2019 – Jaroni, M.S., Friedrich, B. and Letmathe, P. 2019. Economical feasibility of rare earth mining outside China. Minerals 9(10), DOI: 10.3390/min9100576.
91.
Jara et al. 2019 – Jara, A., Betemariam, A., Woldetinsae, G. and Kim, J. 2019. Purification, application and current market trend of natural graphite: A Review. International Journal of Mining Science and Technology 29, pp. 671–689, DOI: 10.1016/j.ijmst.2019.04.003.
92.
Jasiński et al. 2018 – Jasiński, D., Cinelli, M., Dias, L.C., Meredith, J. and Kirwan, K. 2018. Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis. Resources Policy 58, pp. 150–158, DOI: 10.1016/j.resourpol.2018.04.011.
93.
Jiang, L. and Jiang, H. 2023. Analysis of predictions considering mineral prices, residential energy, and environmental risk: Evidence from the USA in COP 26 perspective. Resources Policy 82, DOI: 10.1016/j.resourpol.2023.103431.
95.
Karaca et al. 2013 – Karaca, Z., Yücel, D.Ş., Yücel, M.A. and Çetiner, Z.S. 2013. Geothermal sources and determination of their properties. Geological Information System Report, Çanakkale, Turkey.
96.
Kahraman, E. and Akay, O. 2022. Comparison of exponential smoothing methods in forecasting global prices of main metals. Mineral Economics 36(2), DOI: 10.1007/s13563-022-00354-y.
97.
KAP 2022. Controlmatik Technology Energy and Engineering Inc. Special Description (Public). Public Disclosure Platform (KAP). [Online:]
https://www.kontrolmatik.com/m....
98.
Kang et al. 2022 – Kang, X., Wang, M., Wang, T., Luo, F., Lin, J. and Li, X. 2022. Trade trends and competition intensity of international copper flow based on complex network: From the perspective of industry chain. Resources Policy 79, DOI: 10.1016/j.resourpol.2022.103060.
100.
Kasmaeeyazdi et al. 2021 – Kasmaeeyazdi, S., Abdolmaleki, M., Ibrahim, E., Jiang, J., Marzan, I. and Rodríguez, I.B. 2021. Copernicus data to boost raw material source management: Illustrations from the RawMatCop programme. Resources Policy 74, DOI: 10.1016/j.resourpol.2021.102384.
101.
Kavanagh et al. 2018 – Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A. and Cleary, J. 2018. Global lithium sources – industrial use and future in the electric vehicle industry: a review. Resources 7(3), DOI: 10.3390/resources7030057.
102.
Kenza, B. and Harry, D. 2023. Deep-sea mining is key to making transition to clean energy, says Loke. Financial Times, 2023-04-01. [Online:]
https://www.ft.com/content/1d5....
103.
Kerem, A. 2014. Elektrikli araç teknolojisinin gelişimi ve gelecek beklentileri (Development of electric vehicle technology and future expectations). The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University 5(1), pp. 1–13. [Online:]
https://dergipark.org.tr/tr/do....
104.
Koç 2023. Ford, LG Energy Solution, and Koç Holding to Establish a Joint Venture to Produce Battery Cells as Ford Prepares to Bring More EVs to Customers in Europe. [Online:]
https://www.koc.com.tr/media-c....
105.
Kustra et al. 2023 – Kustra, A., Lorenc, S., Podobińska-Staniec, M. and Wiktor-Sułkowska, A. 2023. Value chains in the high-tech raw materials industry – the example of the lithium value chain. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(4), pp. 5–22, DOI: 10.24425/gsm.2023.148165.
106.
Lapko et al. 2016 – Lapko, Y., Trucco, P. and Nuur, C. 2016. The business perspective on materials criticality: Evidence from manufacturers. Resources Policy 50, pp. 93–107, DOI: 10.1016/j.resourpol.2016.09.001.
107.
Lapko, Y. and Trucco, P. 2018. Influence of power regimes on identification and mitigation of material criticality: The case of platinum group metals in the automotive sector Resources Policy 59, pp. 360–370, DOI: 10.1016/j.resourpol.2018.08.008.
108.
Latham, E. and Kilbey, B. 2019. Lithium supply is set to triple by 2025. Will it be enough? Article dated 24/10/2019, S&P Global Platts. [Online:]
https://www.spglobal.com/marke....
109.
Lewicka, E. and Burkowicz, A. 2017. The changes in the structure of mineral raw materials needs in Poland between 2011−2015. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 33 (4), pp. 5–27, DOI: 10.1515/gospo-2017-0045.
110.
Li, L.Z. and Yang, X. 2016. China’s rare earth resources, mineralogy, and beneficiation. [In:] Rare Earths Industry: Technological, Economic, and Environmental Implications, Edited by: De Lima I.B. and Filho W.L., Elsevier, DOI: 10.1016/C2014-0-01863-1.
111.
Li et al. 2022 – Li, F.Q., Wang, P., Chen, W., Chen, W.Q., Wen, B. and Dai, T. 2022. Exploring recycling potential of rare, scarce, and scattered metals: Present status and future directions. Sustainable Production and Consumption 30, pp. 988–1000, DOI: 10.1016/j.spc.2022.01.018.
112.
Liu et al. 2021 – Liu, H., Li, H., Qi, Y., An, P., Shi, J. and Liu, Y. 2021. Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks. Resources Policy 74, DOI: 10.1016/j.resourpol.2021.102370.
113.
Liu et al. 2022 – Liu, W., Agusdinata, D.B., Eakin, H. and Romero, H. 2022. Sustainable minerals extraction for electric vehicles: A pilot study of consumers’ perceptions of impacts. Resources Policy 75, DOI: 10.1016/j.resourpol.2021.102523.
114.
Liu et al. 2023 – Liu, M., Liu, W., Liu, W., Chen, Z. and Cui, Z. 2023. To what extent can recycling batteries help alleviate metal supply shortages and environmental pressures in China? Sustainable Production and Consumption 36, pp. 139–147, DOI: 10.1016/j.spc.2023.01.004.
117.
Massari, S. and Ruberti, M. 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy 38(1), pp. 36–43, DOI: 10.1016/j.resourpol.2012.07.001.
118.
Mining Turkey Magazine 2021a. Canada does not want to miss the opportunity in the electric vehicle market (World News). Mining Turkey Magazine 95, pp. 22. [Online:]
https://madencilikturkiye.com/....
120.
Mining Turkey Magazine 2021c. The outlook for iron, nickel, aluminum for the year 2021-2022. Mining Turkey Magazine 99, pp. 106–108. [Online:]
https://madencilikturkiye.com/....
121.
Mining Turkey Magazine 2022a. Eti Bakır Realizes 2% of Global Cobalt Production thanks to Mazıdağı Facility (News from Turkey). Mining Turkey Magazine 101, pp. 6. [Online:]
https://madencilikturkiye.com/....
122.
Mining Turkey Magazine 2022b. Tensions between Ukraine and Russia caused an increase in commodity prices. (News from World). Mining Turkey Magazine 101, pp. 28. [Online:]
https://madencilikturkiye.com/....
123.
Mining Turkey Magazine 2022c. An investment of 90 million Turkish Liras will be made for lithium production (News from Turkey). Mining Turkey Magazine 102, pp. 8. [Online:]
https://madencilikturkiye.com/....
124.
Mining Turkey Magazine 2022d. “EV manufacturers will need to be miners” (News from World). Mining Turkey Magazine 102, pp. 28. [Online:]
https://madencilikturkiye.com/....
125.
Mining Turkey Magazine 2023. Global lithium supply may not be able to meet electric vehicle demand (World news). Mining Turkey Magazine 112, pp. 22. [Online:]
https://madencilikturkiye.com/....
127.
Maisel et al. 2023 – Maisel, F., Neef, C., Marscheider-Weidemann, F. and Nissen, N.F. 2023. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resources, Conservation and Recycling 192, DOI: 10.1016/j.resconrec.2023.106920.
128.
Manley et al. 2022 – Manley, R.L., Alonso, E. and Nassar, N.D. 2022. Examining industry vulnerability: A focus on mineral commodities used in the automotive and electronics industries. Resources Policy 78, DOI: 10.1016/j.resourpol.2022.102894.
129.
Maraşlıoğlu, D. 2021. Eti Maden Enterprise started “lithium carbonate” production at its facilities in Eskişehir. TMD, Sector News Bulletin 84, pp. 34. [Online:]
https://www.tmder.org.tr/modul....
130.
Meta Nickel Cobalt Inc 2018. Investment from Zorlu Group to increase nickel to 11 thousand tons from 30 dollars. News by Yavuz Barlas, Economy Manager of Habertürk Newspaper, TMD, Sector News Bulletin 69, pp. 28–29. [Online:]
https://www.tmder.org.tr/modul....
133.
MNR of Canada 2022. The Canadian Critical Minerals Strategy, ISBN 978-0-660-46339-1, Annex E, The Minister of Natural Resources (MNR) of Canada, pp. 47–48. [Online:]
https://www.canada.ca/content/....
134.
Monterrosa, M.E. 2003. Assessment on the uses of geothermal brine at the Berlin Geothermal Field, El Salvador, Int. Geothermal Conference, Reykjavik, Iceland.
135.
Moores, S. 2012. Graphite Red Alert. Industrial Minerals, March 2012, No: 534.
137.
Mu et al. 2023 – Mu, D., Ren, H., Wang, C., Yue, X., Du, J. and Ghadimi, P. 2023. Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network. Resources Policy 80, DOI: 10.1016/j.resourpol.2022.103225.
138.
Mordoğan H. and Helvacı C. 1994. Bor yataklarındaki killer ile bazı güncel göl sularındaki Lityum’un varlığı ve dağılımı (Occurence and distribution of lithium in the clays of borate deposits and some recent lake waters, Turkey). Yerbilimleri (Geosound), 25, pp. 185–195.
141.
Nwaila et al. 2024 – Nwaila, G.T., Bourdeau, J.E., Zhang, S.E., Chipangamate, N., Valodia, I., Mahboob, M.A., Lehohla, T., Shimaponda-Nawa, M., Durrheim, R.J. and Ghorbani, Y. 2024. A systematic framework for compilation of critical raw material lists and their importance for South Africa. Resources Policy 93, DOI: 10.1016/j.resourpol.2024.105045.
145.
Öksüz, N. and Karakuş, A. 2010. Mineralogical and geochemical properties of manganese mineralizations developed due to ophiolites of Yozgat Region. Tubitak Project No: 109Y167, Turkey.
146.
Özdemir et al. 2022 – Özdemir, A.C., Buluş, K. and Zor, K. 2022. Medium- to long-term nickel price forecasting using LSTM and GRU networks. Resources Policy 78, DOI: /10.1016/j.resourpol.2022.102906.
147.
Pehlevan, M. 2019. Kastamonu-Doğanyurt S: 201201287 (Access no: 3122249) mine geology and resource estimation report for the IVth group license area. Report No: 13796, MTA.
148.
Poyraz, İ. 2022. The Third of the Mining Panels in the Industry was realized with the Iron – Steel Sector. (Mining news from Turkey) [In:] TMD, Sector News Bulletin 88, pp. 44–47. [Online:]
https://www.tmder.org.tr/modul....
149.
Radwanek-Bąk, B. 2011. Mineral resources of Poland in the aspect of the assessment of critical minerals to the European Union Economy. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 27(1), pp. 5–19.
150.
Rentizelas, A. and Trivyza, N.L. 2022. Enhancing circularity in the car sharing industry: Reverse supply chain network design optimisation for reusable car frames. Sustainable Production and Consumption 32, pp. 863–879, DOI: 10.1016/j.spc.2022.06.009.
152.
Roberts, J. 2012. Graphite’s Battery Boom. Industrial Minerals, March 2012, No: 534, pp.39.
153.
Rosenau-Tornow et al. 2009 – Rosenau-Tornow, D., Buchholz, P., Riemann, A. and Wagner, M. 2009. Assessing the long-term supply risks for mineral raw materials—a combined evaluation of past and future trends. Resources Policy 34(4), pp. 161–175, DOI: 10.1016/j.resourpol.2009.07.001.
154.
Sailer, M. 2000. Lithium takes charge. Industrial Minerals 390(1), pp. 37–47.
156.
Satrovic et al. 2023 – Satrovic, E., Cetindas, A., Akben, I. and Damrah, S. 2023. Natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Research, DOI: 10.1016/j.gr.2023.04.008.
158.
Simoni et al. 2024 – Simoni, M.U., Drielsma, J.A., Ericsson, M., Gunn, A.G., Heiberg, S., Heldal, T.A., Nassar, N.T., Petavratzi, E. and Müller, D.B. 2024. Mass-Balance-Consistent geological stock accounting: A new approach toward sustainable management of mineral resources. Environmental Science and Technology 58(2), pp. 971–990, DOI: 10.1021/acs.est.3c03088.
159.
Sirkeci et al. 2006 – Sirkeci, A.A., Gül, A., Bulut, G., Arslan, F., Onal, G. and Yüce, A.E. 2006. Recovery of Co, Ni, and Cu from the tailings of Divrigi iron ore concentrator. Mineral Processing and Extractive Metallurgy Review 27(2), pp. 131–141, DOI:
https://doi.org/10.1080/088275....
160.
Stepanek et al. 2013 – Stepanek, C., Walter, M. and Rathgeber, A. 2013. Is the convenience yield a good indicator of a commodity’s supply risk? Resources Policy 38(3), 395–405, DOI: 10.1016/j.resourpol.2013.06.001.
161.
Szamałek et al. 2013 – Szamałek, K., Konopka, G., Zglinicki, K. and Marciniak-Maliszewska, B. 2013. New potential source of rare earth elements. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(4), pp. 59–76, DOI: 10.2478/gospo-2013-0041.
162.
Szlugaj, J. and Radwanek-Bąk, B. 2022. Lithium sources and their current use. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(1), pp. 61–87, DOI: 10.24425/gsm.2022.140613.
163.
Şahiner et al. 2021 – Şahiner, M., Gençbay, B. and Dinlen, İ. 2021. Basic economic indicators of the mining sector, 2022. MTA.
164.
Şengüler, İ. 2021. New horizons in lithium extraction: Could geothermal resources and salt water be the solution? Mining Turkey Magazine 99, pp. 126–130. [Online:]
https://madencilikturkiye.com/....
165.
Tabelin et al. 2021 – Tabelin, C.B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S. and Canbulat, I. 2021. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering 163, DOI: 10.1016/j.mineng.2020.106743.
166.
Tang et al. 2021 – Tang, C., Sprecher, B., Tukker, A. and Mogollón, J.M. 2021. The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy 74, DOI: 10.1016/j.resourpol.2021.102351.
168.
Tian et al. 2021 – Tian, X., Geng, Y., Sarkis, J., Gao, C., Sun, X., Micic, T., Hao, H. and Wang, X. 2021. Features of critical resource trade networks of lithium-ion batteries. Resources Policy 73, DOI: 10.1016/j.resourpol.2021.102177.
169.
Tiess, G. 2010. Minerals policy in Europe: Some recent developments. Resources Policy 35(3), pp. 190–198, DOI: 10.1016/j.resourpol.2010.05.005.
170.
Tilton et al. 2018 – Tilton, J.E., Crowson, P.C.F., DeYoung Jr., J.H., Eggert, R.G., Ericsson, M., Guzmán, J.I., Humphreys, D., Lagos, G., Maxwell, P., Radetzki, M., Singer, D.A. and Wellmer, F.W. 2018. Public policy and future mineral supplies. Resources Policy 57, pp. 55–60, DOI: 10.1016/j.resourpol.2018.01.006.
172.
Tuomela et al. 2021 – Tuomela, P., Törmänen, T. and Michaux, S. 2021. Strategic roadmap for the development of Finnish battery mineral resources. Geological Survey of Finland, Open File Research Report 31/2021.
173.
Tufan, B. and Batar, T. 2015. Improvement of Oysu graphite ore flotation parameters. Suleyman Demirel University, Journal of Institute of Science 19(3), pp. 17–25.
174.
Ullah et al. 2021 – Ullah, A., Zhang, Q. and Ahmed, M. 2021. The impact of smart connectivity features on customer engagement in electric vehicles. Sustainable Production and Consumption 26, pp. 203–212, DOI: 10.1016/j.spc.2020.10.004.
175.
Urcun, U. 2008. Graphite mining in Turkey. Mining Bulletin 86, pp. 44.
192.
USGS 2023. Mineral Commodiy Summaries 2023. U.S. Geological Survey (USGS), DOI: 10.3133/mcs2023.
199.
Varank, M. 2022. The foundation of the Lithium-iron-phosphate battery production factory was laid in Ankara (News from Turkey). Mining Turkey Magazine 101, pp. 16. [Online:]
https://madencilikturkiye.com/....
200.
Weimer et al. 2019 – Weimer, L., Braun, T. and vom Hemdt, A. 2019. Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resources Policy 64, DOI: 10.1016/j.resourpol.2019.101473.
201.
Wellington, T.A. and Mason, T.E. 2014. The effects of population growth and advancements in technology on global mineral supply. Resources Policy 42, pp. 73–82, DOI: 10.1016/j.resourpol.2014.10.006.
203.
Yazıcı, E.Y. and Deveci, H. 2011. Geleceğin madenleri: E-atıklar (Mines of Future: E-waste). International Mining Congress of Turkey (IMCET 2011), Proceedings Book, May 11–13, Antalya, pp. 441–448.
204.
Yıldız, T.D. 2013. Analysis of the changes in mining exploration activities before and after Mining Law No. 3213. Proceedings of The 23rd International Mining Congress And Exhibition Of Turkey (April 16–19, 2013), Antalya, Turkey, pp. 1981–1994. [Online:]
https://www.researchgate.net/p....
205.
Yıldız, T.D. 2022. How can the state rights be calculated by considering a high share of state right in mining operating costs in Turkey? Resources Policy 75, DOI: 10.1016/j.resourpol.2021.102509.
206.
Yıldız, T.D. 2024a. Opportunities for the recovery of rare earth elements from mining tailings and urban mining. [In:] Trash or Treasure: Entrepreneurial Opportunities in Waste Management, Singh, P. and Borthakur, A. (eds), Springer, Cham, pp. 183–205, DOI: 10.1007/978-3-031-55131-4_7.
207.
Yıldız, T.D. 2024b. Considering the development levels of countries, contributions of mineral recovery from mining tailings and urban mining wastes to sustainability criteria – a review. Resources Policy 99, DOI: 10.1016/j.resourpol.2024.105399.
208.
Yıldız et al. 2024 – Yıldız, T.D., Tombal-Kara, T.D. and Kurşun-Ünver, İ. 2024. Challenges and recovery opportunities in waste management during the mining and enrichment processes of rare earth elements containing ores. [In:] Trash or Treasure: Entrepreneurial Opportunities in Waste Management, Singh, P., Borthakur, A. (eds), Springer, Cham, pp. 277–306, DOI: 10.1007/978-3-031-55131-4_11.
209.
Yılmaz, O. 2018. Turkey’s first nickel and cobalt producing facility: Meta Nickel. Interview with Orhan Yılmaz. YMGV, Sector Mining Journal 67, pp. 42–46. [Online:]
https://ymgv.org.tr/uploads/de....
210.
Yığmatepe, M. 2019. In Kahramanmaraş-Göksun-Fındıklıkoyak Village, graphite resource estimation and mine geology report for the IVth group license area. Report No: 13817, MTA.
212.
YMGV 2021a. Eti Maden realized the first lithium carbonate production. (News from Turkey). YMGV, Sector Mining Journal 79, pp. 17. [Online:]
https://ymgv.org.tr/uploads/de....
213.
YMGV 2021b. From boron waste to lithium ion battery (News from the industry). (Quoted from: Hürriyet Newspaper). YMGV, Sector Mining Journal 80, pp. 17. [Online:]
https://ymgv.org.tr/uploads/de....
214.
Yu et al. 2021 – Yu, S., Duan, H. and Cheng, J. 2021. An evaluation of the supply risk for China’s strategic metallic mineral resources. Resources Policy 70, DOI: 10.1016/j.resourpol.2020.101891.
215.
Yun, Y. 2020. Assessing the criticality of minerals used in emerging technologies in China. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(2), pp. 5–20, DOI: 10.24425/gsm.2020.132559.
216.
Yüngül, Ö. 2018. Investment from Zorlu Group that will increase nickel to 11 thousand dollars from 30 dollars a ton. News by Yavuz Barlas, Habertürk Newspaper. TMD, Sector News Bulletin 69, pp. 28–29. [Online:]
https://www.tmder.org.tr/modul....
217.
Zanbak et al. 2023 – Zanbak, C., Yüce, A.E. and Ergunalp, D., 2023. Critical/strategical concepts in global production and supply of raw materials: Current situation and future projection in Turkey. Proceedings of the 28th International Mining Congress and Exhibition of Turkey, Antalya, Turkey, November 28–December 1, pp. 871–879. [Online:]
https://api.maden.org.tr/uploa....
218.
Zheng et al. 2021 – Zheng, B., Zhang, Y. and Chen, Y. 2021. Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data. Resources Policy 71, DOI: 10.1016/j.resourpol.2021.101996.
219.
Zhou et al. 2016 – Zhou, B., Li, Z., Zhao, Y., Zhang, C. and Wei, Y. 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 32(4), pp. 29–44, DOI: 10.1515/gospo-2016-0039.
220.
Zhou et al. 2022 – Zhou, X., Zhang, H., Zheng, S. and Xing, W. 2022. The global recycling trade for twelve critical metals: Based on trade pattern and trade quality analysis. Sustainable Production and Consumption 33, pp. 831–845, DOI: 10.1016/j.spc.2022.08.011.
221.
Zuo et al. 2021 – Zuo, Z., Cheng, J., Guo, H. and Li, Y. 2021. Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace. Resources Policy 74, DOI: 10.1016/j.resourpol.2021.102372.