ORIGINAL PAPER
Geochemistry and fluid-inclusion microthermometry of the Orenagil barite deposit, Türkiye
More details
Hide details
1
Department of Geological Engineering, Batman University, Batman
Submission date: 2024-08-21
Final revision date: 2024-10-01
Acceptance date: 2024-11-16
Publication date: 2025-03-18
Corresponding author
H. Alim Baran
Department of Geological Engineering, Batman University
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(1):83-105
KEYWORDS
TOPICS
ABSTRACT
Orenagil barites are observed as space fillings, veins, and lenses incompatible with the host rock within the Devonian-aged Meydan formation belonging to the Bitlis metamorphics observed in the Bitlis suture zone in the north of Sason (Batman, Türkiye). Bitlis metamorphites are an important unit that hosts many mineral deposits. Since the study area is very close to the Bitlis suture zone, the effect of tectonism is intensely observed in the field. The mineral assemblage consists of barite, pyrite, chalcopyrite, hematite, goethite, magnetite, bornite, chalcocite, covellite, malachite, azurite, and limonite. The BaSO4 content of barite samples ranges from 25 to 61 wt% and contains high SrO (2.04 wt%). Fluid inclusions observed in barite samples are predominantly of the fluid-rich two-phase (Liquid+Vapour) type. Homogenization temperatures of fluid inclusions in barites are observed in a wide range (169 to 382.1°C), and salinity values are collected in two different groups (0.27–6.9 wt% NaCl and 12.7–20.45 wt% NaCl). Eu/Eu* values (11.20–121.36) of barites indicate exhalative hydrothermal fluids, whereas Ce/La > 1 (10.03–54.76) indicates a terrestrial origin for barites. In spite of the average REE pattern of barite and their similar host rocks, barite differs from host rocks in terms of their negative Ce peak and strong positive Eu peak. The trends of the REE values of the samples and the values of the barites in the CeN/SmN–CeN/YbN diagram indicate that the barites are formed from multiple sources, including seawater and meteoric water.
CONFLICT OF INTEREST
The Author have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Geochemia i mikrotermometria inkluzyjna w złożu barytu Orenagil, Turcja
baryt, Batman, pomiary mikrotermometryczne, geochemia REE
Baryty Orenagil obserwuje się jako wypełnienia przestrzeni, żyły i soczewki niekompatybilne ze skałą macierzystą w obrębie formacji Meydan wiekowej dewonu, należącej do metamorfików Bitlis obserwowanych w strefie szwów Bitlis na północy Sason (Batman, Turcja). Metamorfity Bitlis są ważną jednostką, w której znajduje się wiele złóż minerałów. Ponieważ obszar badań znajduje się bardzo blisko strefy szwu Bitlisa, w terenie intensywnie obserwuje się wpływ tektonizmu. Zespół minerałów składa się z barytu, pirytu, chalkopirytu, hematytu, getytu, magnetytu, bornitu, chalkocytu, kowelinu, malachitu, azurytu i limonitu. Zawartość BaSO4 w próbkach barytu waha się od 25 do 61% wag. i zawiera wysoką zawartość SrO (2,04% wag.). Wtrącenia płynne obserwowane w próbkach barytu są głównie typu dwufazowego bogatego w płyn (ciecz + para). Temperatury homogenizacji wtrąceń płynnych w barytach obserwuje się w szerokim zakresie (169 do 382,1°C), a wartości zasolenia zbierane są w dwóch różnych grupach (0,27–6,9% wag. NaCl i 12,7–20,45% wag. NaCl). Wartości Eu/Eu* (11,20–121,36) barytów wskazują na ekshalacyjne płyny hydrotermalne, natomiast Ce/La > 1 (10,03–54,76) wskazują na ziemskie pochodzenie barytów. Pomimo średniego układu REE barytu i podobnych skał macierzystych, baryt różni się od skał macierzystych pod względem ujemnego piku Ce i silnego dodatniego piku Eu. Trendy wartości REE próbek i wartości barytów na wykresie CeN/SmN–CeN/YbN wskazują, że baryty powstają z wielu źródeł, w tym z wody morskiej i wody meteorycznej.
REFERENCES (43)
1.
Akıncı, Ö.T. 2009. Ophiolite-hosted Copper and Gold Deposits of Southeastern Turkey: Formation and Relationship with Seafloor Hydrothermal Processes. Turkish Journal of Earth Sciences 18, pp. 475–509, DOI: 10.3906/yer-0803-8.
2.
Akkoca, D.B. and Çelebi, H. 2018. The Massive Sulfide Deposit of Siirt Madenköy, South-Eastern Turkey. Journal of Minerals and Materials Characterization and Engineering 6, pp. 155–178, DOI: 10.4236/jmmce.2018.62012.
3.
Alaminia, Z. and Sharifi, M. 2018. Geological, geochemical and fluid inclusion studies on the evolution of barite mineralization in the Badroud area of Iran. Ore Geology Reviews 92, pp. 613–626, DOI: 10.1016/j.oregeorev.2017.12.011.
4.
Asl et al. – Asl, S.M., Jafari, M., Sahamiyeh, R.Z. and Shahrokhi, V. 2015. Geology, geochemistry, sulfur isotope composition, and fluid inclusion data of Farsesh barite deposit, Lorestan Province, Iran. Arabian Journal of Geosciences 8, pp. 7125–7139, DOI: 10.1007/s12517-014-1673-7.
5.
Babaei, A.H. and Ganji, A. 2018. Characteristics of the Ahmadabad hematite/barite deposit, Iran – studies of mineralogy, geochemistry and fluid inclusions. Geologos 24(1), pp. 55–68, DOI: 10.2478/logos-2018-0004.
6.
Barrett et al. 1990 – Barrett, T.J., Jarvis, I. and Jarvis, K.E. 1990. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology 18, pp. 583–586, DOI: 10.1130/0091-7613(1990)018%3C0583:REEGOM%3E2.3.CO;2.
7.
Bhattacharya et al. 2007 – Bhattacharya, H.N., Chakraborty, I. and Ghosh, K. 2007. Geochemistry of some banded iron formations of the Archean supracrustal, Jharkhand-Orissa region, India. Journal of Earth System Science 116(3), pp. 245-259, DOI: 10.1007/s12040-007-0024-4.
8.
Bodnar, R. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, pp. 683–684, DOI: 10.1016/0016-7037(93)90378-A.
9.
Boray, A. 1973. The structure and metamorphism of the Bitlis area, Turkey. Ph. D. Thesis, University of London, London, England.
10.
Çiftçi, E. 2019. Volcanogenic Massive Sulfide (VMS) Deposits of Turkey. [In:] Pirajno F. et al. eds. Mineral Resources of Turkey. Modern Approaches in Solid Earth Sciences, vol 16. Switzerland: Springer, pp 427–495, DOI: 10.1007/978-3-030-02950-0_9.
11.
DeBarr et al. 1985 – DeBarr, H.J.W., Bacon, M.P. Brewer, P.G. and Bruland, K.W. 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta 49, pp.1943–1959, DOI: 10.1016/0016-7037(85)90089-4.
12.
Derakhshi et al. – Derakhshi, M.G., Hosseinzadeh, M.R., Moayyed, M. and Maghfouri, S. 2020. Geological, isotope geochemical and fluid inclusion constraints on the Mishu SEDEX-type Barite (Pb-Cu-Zn) system, NW Iran. Ore Geology Reviews 121, DOI: 10.1016/j.oregeorev.2020.103493.
13.
Ehya, F. 2012. Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineralogy and Petrology 104, pp. 81–93, DOI: 10.1007/s00710-011-0172-8.
14.
Ehya, F. and Mazraei, S.M. 2017. Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: Evidences from REE geochemistry and fluid inclusions. Journal of African Earth Sciences 134, pp. 299–307, DOI: 10.1016/j.jafrearsci.2016.11.006.
15.
Elderfield, H. Whitfield, M. Burton, J.D. Bacon, M. P. and Liss, P.S. 1988. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 325, no. 1583, pp. 105–126. [Online:]
http://www.jstor.org/stable/38....
16.
Ghorbani, M. 2013. The Economic Geology of Iran, Mineral Deposits and Natural Resources. Springer Geology, Dordrecht, 572 pp., DOI: 10.1007/978-94-007-5625-0.
17.
Göncüoğlu, M.C. and Turhan, N. 1985. Bitlis Metamorfik Kuşağının Orta Bölümünün Temel Jeolojisi, Maden Tetkik ve Arama Müdürlüğü (MTA), MTA Raporu Derleme no 7707, Ankara, Türkiye (in Turkish).
18.
Guichard et al. – Guichard, F. Church, T.M. Treuil, M. and Jaffrezic, H. 1979. Rare earths in barites: distribution and effects on a queous partitioning. Geochimica et Cosmochimica Acta 43, pp. 983–997, DOI: 10.1016/0016-7037(79)90088-7.
19.
Hajalilou et al. 2014 – Hajalilou, B. Vusuq, B. and Moayed, M. 2014. REE Geochemistry of Precambrian Shale-Hosted Barite-Galena Mineralization, a Case Study from NW Iran. Journal of Crystallography and Mineralogy 22(2), pp. 39–48.
20.
Hanilçi et al. 2016 – Hanilçi, N. Öztürk, H. Banks, D.A. and Koral, H. 2016. Carbonate-Hosted Zn-Pb deposits in the Hakkari-Şırnak region: a newly discovered Tethyan Metallogenic province in Turkey. SEG 2016 conference, Çeşme, Turkey, September, pp. 25–28.
21.
Hanilçi et al. 2017 – Hanilçi, N. Öztürk, H. and Banks, D.A. 2017. Geochemical stratigraphy of the Karakaya non-sulphide Zn-Pb deposit, Hakkari, SE Turkey, Proceedings of the 14th SGA Biennial Meeting, Canada, August, pp. 669–671.
22.
Hanilçi et al. 2018 – Hanilçi, N. Öztürk, H. and Banks, D.A. 2018. Trace element and stable sulpur isotope geochemistry of the Hakkari region Zn-Pb deposits. 8th Geochemistry symposium, Antalya, Turkey, May, pp. 194–195.
23.
Hanilçi et al. 2019 – Hanilçi, N. Öztürk, H. and Kasapçi, C. 2019. Carbonate-Hosted Pb-Zn Deposits of Turkey. [In:] Pirajno F., Ünlü T., Dönmez C., and Şahin M. (eds). Mineral Resources of Turkey. Modern Approaches in Solid Earth Sciences 16, pp. 497–534, DOI: 10.1007/978-3-030-02950-0_10.
24.
Hormozi et al. 2023 – Hormozi, H.K., Ehya, F. Paydar, P.R. and Kheymehsari, S.M. 2023. Formation of barite in the Ab Torsh deposit, Kerman province, Iran: Insights from rare earth elements, O and S isotopes, and fluid inclusions. Geochemistry 83(4), DOI: 10.1016/j.chemer.2023.126024.
25.
Kato, Y. 1999. Rare earth elements as an indicator to origins of skarn deposits: Examples of the Kamioka Zn-Pb and Yoshiwara-Sannotake Cu(-Fe) deposits in Japan. Resource Geology 49, pp. 183–198, DOI: 10.1111/j.1751-3928.1999.tb00045.x.
26.
Kesler, S.E. 2005. Ore-forming fuids. Elements 1(1), pp. 13–18, DOI: 10.2113/gselements.1.1.13.
27.
Kumral, M. 2010. Mineralogical, geochemical, and isotopic (Sr, O, S) evidence for multiple fluid sources for the Hasköy barite deposits, SE Anatolia, Turkey. Fresenius Environmental Bulletin 19(2), pp. 208–220.
28.
Okay, A.I. 2008. Geology of Turkey: A synopsis. Anschnitt 21, pp. 19–42.
29.
Palinkas L.A. and Jurkovic I. 1994. Lanthanide geochemistry and fluid inclusion peculiarities of the fluorite form the barite deposits south of Kresevo (Bosnia and Herzegovina). Geologia Croatia 47(1), pp. 103–115.
30.
Roedder, E. 1958. Technique for the extraction and partial chemical analysis of fluid-filled inclusions from minerals. Economic Geology 53, pp. 235–269, DOI: 10.2113/gsecongeo.53.3.235.
31.
Roedder, E. 1972. Compostion of Fluid Inclusion. U.S. Geological Survey: Reston, VA, USA.
32.
Roedder, E. 1984. Fluid Inclusions. Mineralogical Society of America: Chantilly, VA, USA, DOI: 10.1515/9781501508271.
33.
Santoro et al. 2013 – Santoro, L. Boni, M. Herrington, R. and Cleeg, A. 2013. The Hakkari nonsulfide Zn-Pb deposit in the context of other nonsulfide Zn-Pb deposits in the Tethyan Metallogenic Belt of Turkey. Ore Geology Reviews 53, pp. 244–260, DOI: 10.1016/j.oregeorev.2013.01.011.
34.
Şaşmaz et al. 2014 – Şaşmaz, A. Türkyilmaz, B. Öztürk, N. Yavuz, F. and Kumral, M. 2014. Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazığ–Malatya region, eastern Turkey. Ore Geology Reviews 56, pp. 352–372, DOI: 10.1016/j.oregeorev.2013.06.012.
35.
Starke, R. 1969. Die Strontiumgehalte der Baryte. Freiberger Forschungsh 150, pp. 86 (in German).
36.
Tas Ozdogan et al. 2017 – Tas Ozdogan, A. Uras, Y. and Oner, F. 2017. Geochemistry of the barite deposits near Adana-Feke area (Eastern Taurides). Russian Geology and Geophysics 58, pp. 1351–1367, DOI: 10.1016/j.rgg.2017.11.003.
37.
Taylor S.R. and McLennan S.M. 1981. The composition and evolution of the continental crust: rare earth element evidences from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 301, pp. 381–399, DOI: 10.1098/rsta.1981.0119.
38.
Taylor, S.R. and McLennan, S.M. 1985. The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Oxford, Blackwell, pp. 312. [Online:]
https://api.semanticscholar.or....
39.
Werner, C.D. 1958. Geochemie und paragenese der saxonischen schwerspat–flusspat–gaenge im schmalkaldener revier. Freiberger Forschungshf, Berlin. pp. 47 (in German).
40.
Wilkinson, J.J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos 55, pp. 229–272, DOI: 10.1016/S0024-4937(00)00047-5.
41.
Yılmaz et al. 1987 – Yılmaz, Y. Şaroğlu, F. and Güner, Y. 1987. Initiation of the neomagmatism in East Anatolia. Tectonophysics 134, pp. 177–199, DOI: 10.1016/0040-1951(87)90256-3.
42.
Yılmaz et al. 1993 – Yılmaz, Y. Yiğitbaş, E. and Denç, C.Ş. 1993. Ophiolitic and metamorphic assembleges of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics 12(5), pp. 1280–1297, DOI: 10.1029/93TC00597.
43.
Zarasvandi et al. 2014 – Zarasvandi, A., Zaheri, N., Pourkaseb, H., Chrachi, A. and Bagheri, H. 2014. Geochemistry and fuid-inclusion micro thermometry of the Farsesh barite deposit, Iran. Geologos 20(3), pp. 201–214, DOI: 10.2478/logos-2014-0015.