ORIGINAL PAPER
An analytical network process model for deciding on Turkiye’s Coal Mining Policy
 
More details
Hide details
1
Eskisehir Osmangazi University
 
 
Submission date: 2024-03-20
 
 
Final revision date: 2024-05-15
 
 
Acceptance date: 2024-08-01
 
 
Publication date: 2024-09-11
 
 
Corresponding author
Serafettin Alpay   

Eskisehir Osmangazi University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(3):113-134
 
KEYWORDS
TOPICS
ABSTRACT
Coal is a necessary energy source for electric generation and other industrial uses. Countries that use this energy source as a domestic and natural resource should consider their coal mining policies. It is a hard task for the people who are responsible for the development and planning of investments since coal mining policy is affected by economic, political, social, national, and environmental factors. In addition; lots of sub-factors, which can be clustered under these factors, have a great impact on deciding on a coal mining policy. These factors and sub-factors are not independent from each other but also have interrelationships. This paper proposes a multi-criteria decision-making model for selecting the best coal mining policy in Turkiye by using the Analytical Network Process (ANP) method in which all these effective factors and their relationships are considered. Turkiye faces energy supply issues since energy demand has increased owing to rapid economic expansion, rising population, and growing industrialization. Turkiye is heavily dependent on imported energy sources such as oil, gas, and hard coal since the country’s natural energy resources are restricted to lignite and hard coal. In this respect, Turkiye needs to develop a coal mining policy according to its conditions. The main purpose of this study is to investigate Turkiye most appropriate coal policy by taking different perspectives and evaluating the issue as a decision problem. After the modeling studies by using ANP, it is concluded that much more coal production should be supplied by making new investments in the coal mining sector in Turkiye. The ANP method found as a useful and practical technique for deciding on mining policy problems.
METADATA IN OTHER LANGUAGES:
Polish
Analityczny model procesu sieciowego służący do podejmowania decyzji w sprawie polityki wydobycia węgla w Turcji
górnictwo węgla kamiennego, zrównoważona polityka, podejmowanie decyzji, MCDM, proces sieci analitycznej (ANP)
Węgiel jest niezbędnym źródłem energii do wytwarzania energii elektrycznej i innych zastosowań przemysłowych. Kraje wykorzystujące to źródło energii jako zasób krajowy i naturalny powinny rozważyć swoją politykę wydobycia węgla. Jest to trudne zadanie dla osób odpowiedzialnych za rozwój i planowanie inwestycji, gdyż na politykę wydobycia węgla wpływają czynniki ekonomiczne, polityczne, społeczne, narodowe i środowiskowe. Ponadto, wiele czynników cząstkowych, które można pogrupować w ramach tych czynników, ma ogromny wpływ na podejmowanie decyzji dotyczących polityki wydobycia węgla. Czynniki te i podczynniki nie są od siebie niezależne, ale również pozostają ze sobą w relacjach. W artykule zaproponowano wielokryterialny model podejmowania decyzji umożliwiający wybór najlepszej polityki wydobycia węgla w Turcji przy użyciu metody Analytical Network Process (ANP), w której uwzględniane są wszystkie te efektywne czynniki i ich relacje. Turcja stoi w obliczu problemów z dostawami energii, ponieważ zapotrzebowanie na nią wzrosło w wyniku szybkiego rozwoju gospodarczego, rosnącej liczby ludności i rosnącej industrializacji. Turcja jest w dużym stopniu uzależnione od importowanych źródeł energii, takich jak ropa naftowa, gaz i węgiel kamienny, ponieważ naturalne zasoby energetyczne kraju ograniczają się do węgla brunatnego i kamiennego. W tym zakresie Turcja musi opracować politykę wydobycia węgla zgodnie ze swoimi warunkami. Głównym celem tego badania jest zbadanie najwłaściwszej polityki węglowej Turcji poprzez przyjęcie różnych perspektyw i ocenę tej kwestii jako problemu decyzyjnego. Po badaniach modelowych z wykorzystaniem ANP stwierdzono, że znacznie większa produkcja węgla powinna zostać zapewniona poprzez nowe inwestycje w sektorze wydobycia węgla w Turcji. Metodę ANP uznano za przydatną i praktyczną technikę decydowania o problemach polityki górniczej.
REFERENCES (40)
1.
Adams, W.J. and Saaty, R. 2003. Super Decisions Software Guide. Super Decisions, 9.
 
2.
American Association of Petroleum Geologists, Energy Minerals Division. 2014. Unconventional Energy Resources: 2013 Review. Natural Resources Research 23(1), pp. 19–98.
 
3.
Anac, S. 2010. Coal in Turkish Energy Policy and Clean Coal Technologies. [In:] The 27th Annual International Pittsburgh Coal Conference. Istanbul/Turkiye.
 
4.
Appunn, K. 2023. Coal in Germany, Clean Energy Wire. [On-line:] https://www.cleanenergywire.or... [Accessed: 2024-03-19].
 
5.
Azimi et al. 2011 – Azimi, R., Yazdani-Chamzini, A., Fouladgar, M.M., Zavadskas, E.K. and Basiri, M.H. 2011. Ranking the policies of mining sector through ANP and TOPSIS in a SWOT framework. Journal of Business Economics and Management 12(4), pp. 670–689.
 
6.
Bascetin, A. 2007. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine. Environmental Geology 52(4), pp. 663–672, DOI: 10.1007/s00254-006-0495-7.
 
7.
Ciołek et al. 2022 – Ciołek, M., Emerling, I., Olejko, K., Sadowska, B. and Wójcik-Jurkiewicz, M. 2022. Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study. Energies 15(5), DOI: 10.3390/en15051945.
 
8.
Demirkan, H. 2016. Coal mining in Turkiye and its role in energy supply. Mining Turkiye 10, pp. 36–46.
 
9.
Eurocoal 2022 – European Association for Coal and Lignite, Coal Industry Across Europe, Brussels, Belgium, 2022.
 
10.
Future Coal 2024 – Coal Facts. [On-line:] https://www.worldcoal.org/coal... [Accessed: 2024-03-19].
 
11.
Galos, K. and Szlugaj, J. 2014. Management of hard coal mining and processing wastes in Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 30(4), pp. 51–64, DOI: 10.2478/gospo-2014-0039.
 
12.
Galos et al. 2018 – Galos, K., Tiess, G., Kot-Niewiadomska, A., Murguia, D. and Wertichova, B. 2018. Mineral deposits of public importance (MDOPI) in relation to the project of the national mineral policy of Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34(4), pp. 5–24, DOI: 10.24425/122594.
 
13.
Genc et al. 2018 – Genc, T., Kabak, M., Ozceylan, E. and Cetinkaya, C. 2018. Evaluation of natural gas strategies of Turkey in east Mediterranean region: A strengths-weaknesses-opportunities-threats and analytic network process approach. Technological and Economic Development of Economy 24(3), pp. 1041–1062, DOI: 10.3846/20294913.2016.1253043.
 
14.
Heydari et al. 2023 – Heydari, M., Osanloo, M. and Bascetin, A. 2023. Developing a new social impact assessment model for deep open-pit mines. Resources Policy 82, DOI: 10.1016/j.resourpol.2023.103485.
 
15.
Kusi-Sarpong et al. 2016 – Kusi-Sarpong, S., Sarkis, J. and Wang, X. 2016. Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation. International Journal of Production Economics 181, pp. 325–341, DOI: 10.1016/j.ijpe.2016.04.002.
 
16.
Lashgari et al. 2012 – Lashgari, A., Yazdani-Chamzini, A., Fouladgar, M.M., Zavadskas, E.K., Shafiee, S. and Abbate, N. 2012. Equipment selection using fuzzy multi criteria decision making model: key study of Gole Gohar iron mine. Engineering economics 23(2), pp. 125–136, DOI: 10.5755/j01.ee.23.2.1544.
 
17.
Li et al. 2015 – Li, L., Lei, Y., Zhao, L. and Li, X. 2015. Study on the Optimization of the Industrial Structure in a Mining Economic Region: Taking Carbon Emissions as a Restriction. Minerals 5(2), pp. 203–220, DOI: 10.3390/min5020203.
 
18.
Li et al. 2022 – Li, Y., Zhao, G., Wu, P. and Qiu, J. 2022. An Integrated Gray DEMATEL and ANP Method for Evaluating the Green Mining Performance of Underground Gold Mines. Sustainability 14(11), DOI: 10.3390/su14116812.
 
19.
Liu et al. 2015 – Liu, C., Liu, J. and Wang, J.X. 2015. Fuzzy Comprehensive Evaluation of Safety Culture in Coal Mining Enterprises. Applied Mechanics and Materials 724, pp. 373–377.
 
20.
Ma et al. 2017 – Ma, W., Schott, D. and Lodewijks, G. 2017. A New Procedure for Deep Sea Mining Tailings Disposal. Minerals 7(4), pp. 1–14, DOI: 10.3390/min7040047.
 
21.
Meade, L. and Sarkis, J. 2002. A conceptual model for selecting and evaluating third-party reverse logistics providers. Supply Chain Management: An International Journal 7(5), pp. 283–295, DOI: 10.1108/13598540210447728.
 
22.
Mills, S. and House, P. 2014. Prospects for coal and clean coal technologies in Turkiye. IEA Clean Coal Centre: London, UK.
 
23.
Osborne, D. 2013. The Coal Handbook: Towards Cleaner Production Volume 1: Coal production, Woodhead Publishing Limited, Cambridge, UK.
 
24.
RTMENR 2024. Republic of Türkiye Ministry of Energy and Natural Resources. [On-line:] https://enerji.gov.tr/english-... [Accessed: 2024-03-19].
 
25.
RTSSI 2022. Statistical Yearbook: SGK 2022 Statistics, Republic of Turkiye Social Security Institution. [On-line:] https://www.sgk.gov.tr/Istatis... [Accessed: 2024-03-19].
 
26.
Rikhtegar et al. 2014 – Rikhtegar, N., Mansouri, N., Ahadi Oroumieh, A., Yazdani-Chamzini, A., Kazimieras Zavadskas, E. and Kildienė, S. 2014. Environmental impact assessment based on group decision-making methods in mining projects. Economic Research-Ekonomska Istraživanja 27(1), pp. 378–392, DOI: 10.1080/1331677X.2014.966971.
 
27.
Saaty, T.L. 1980. The analytic hierarchy process: Planning, Priority Setting, Resource Allocation. MacGraw-Hill, New York International Book Company.
 
28.
Saaty, T.L. 1996. Decision making with dependence and feedback: The analytic network process. University of Pittsburgh: RWS publications.
 
29.
Saaty, T.L. 2000. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. RWS Publications.
 
30.
Saaty, T.L. 2001. The seven pillars of the analytic hierarchy process. [In:] Multiple Criteria Decision Making in the New Millennium (pp. 15–37), Springer, Berlin, Heidelberg.
 
31.
Saaty, T.L. 2008. The analytic network process. Iranian Journal of Operations Research, pp. 1–28.
 
32.
Schrijversa et al. 2020 – Schrijversa, D., Hoolc, A., Blenginid, G.A., Chene, W., Dewulff, J., Eggertg, R., Ellenh, L., Gaussi, R., Goddinj, J., Habibk, K., Hagelükenl, C., Hirohatam, A., Hofmann-Amtenbrinkn, M., Kosmolo, J., Gleuherp, M., Groholq, M., Kur, A., Lees, M., Liut, G., Nansaiu, K., Nussv, P., Peckh, D., Rellerc, A., Sonnemanna, G., Terceroc, L., Thorenzw, A. and Wägerc, P.A. 2020. A review of methods and data to determine raw material criticality. Resources, Conservation & Recycling 155, DOI: 10.1016/j.resconrec.2019.104617.
 
33.
Silvia et al. 2021 – Silvia, F., Talia, V, and Di Matteo, M. 2021. Coal mining and policy responses: are externalities appropriately addressed? A meta-analysis. Environmental Science & Policy 126, pp. 39–47, DOI: 10.1016/j.envsci.2021.09.013.
 
34.
Statista 2024a. [On-line:] https://www.statista.com/stati... [Accessed: 2024-03-19].
 
35.
Statista 2024b. [On-line:] https://www.statista.com/stati... [Accessed: 2024-03-19].
 
36.
Tamzok, N. 2017. Report about Coal Sector (Lignite in 2016). Republic of Turkiye Ministry of Energy and Natural Resources, Turkish Coal Enterprises, May 2017 (in Turkish).
 
37.
Vidovic, J. and Solar, S. 2018. Recent Developments in Raw Materials Policy in The European Union: Perspective of Eurogeosurveys as a Data Supplier. Biuletyn PIG 472, pp. 11–20, DOI: 10.5604/01.3001.0012.6902.
 
38.
Yavuz, M. and Alpay, S. 2008. Underground Mining Technique Selection by Multicriterion Optimization Methods. Journal of Mining Science 44(4), pp. 391–401, DOI: 10.1007/s10913-008-0043-9.
 
39.
Yavuz, M. and Tezcan, M. 2010. Determination of Optimum Iron Ore Mining Policy in Turkiye by Using Analytical Network Process. [In:] SME Annual Meeting, Phoenix, United States of America.
 
40.
Zhü et al. 2016 – Zhü, K., Zhao, S., Yang, S., Liang, C. and Gu, D. 2016. Where is the way for rare earth industry of China: An analysis via ANP-SWOT approach. Resources Policy 49, pp. 349–357, DOI: 10.1016/j.resourpol.2016.07.003.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top