ORIGINAL PAPER
The application of Knothe’s theory for the planning of mining exploitation under the threat of discontinuous deformation of the surface and for the prediction of ground surface movements with rising water levels in the post-mining phase
More details
Hide details
1
Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
2
RAG Aktiengesellschaft, Im Welterbe 10, 45141 Essen, Germany
Submission date: 2021-06-30
Acceptance date: 2021-08-02
Publication date: 2021-12-22
Corresponding author
Rafał Misa
Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(4):199-218
KEYWORDS
TOPICS
ABSTRACT
The article presents three German-located case studies based on stochastic methods founded by the theory proposed by Knothe and the development of the ‘Ruhrkohle method’ according to Ehrhardt and Sauer. These solutions are successfully applied to predict mining-induced ground movements. The possibility of forecasting both vertical and horizontal ground movements has been presented in the manuscript, which allowed for optimization mining projects in terms of predicted ground movements.
The first example presents the extraction of the Mausegatt seam beneath the district of Moers-Kapellen in the Niederberg mine. Considering, among others, the adaption of the dynamic impact of the underground operations to the mining-induced sensitivity of surface objects, the maximum permissible rate of the face advance has been determined.
The second example presents the extraction of coal panel 479 in the Johann seam located directly in the fissure zone of Recklinghausen-North. Also, in this case, the protection of motorway bridge structure (BAB A43/L225) to mining influences has been presented. The Ruhrkohle method was used as a basis for the mathematical model that was developed to calculate the maximum horizontal opening of the fissure zone and the maximum gap development rate.
Part of the article is dedicated to ground uplift due to rising mine water levels. Although it is not the main factor causing mining-related damage, such movements in the rock masses should also be predicted. As the example of the Königsborn mine, liquidated by flooding, shows stochastic processes are well suited for predicting ground uplift. The only condition is the introduction of minor adjustments in the model and the use of appropriate parameters.
METADATA IN OTHER LANGUAGES:
Polish
Wykorzystanie teorii Knothego do planowania eksploatacji górniczej w warunkach zagrożenia powierzchni deformacjami nieciągłymi oraz do prognozy ruchów powierzchni terenu przy wzroście poziomu wód kopalnianych w fazie poeksploatacyjnej
górnictwo węglowe, zatapianie kopalni, wypiętrzenie powierzchni terenu, przemieszczenia powierzchni terenu, problemy pogórnicze
Artykuł przedstawia trzy studia przypadków zlokalizowane w Niemczech, oparte na metodach stochastycznych, których podstawą jest teoria zaproponowana przez Knothego oraz rozwój „metody Ruhrkohlego” według Ehrhardta i Sauera. Rozwiązania te są z powodzeniem stosowane do przewidywania ruchów górotworu wywołanych wydobyciem surowców. Przedstawiono możliwość prognozowania zarówno pionowych, jak i poziomych ruchów górotworu oraz zaprezentowano możliwości optymalizacji projektów górniczych pod kątem przewidywanych ruchów górotworu.
Pierwszy przykład przedstawia wydobycie pokładu Mausegatt pod okręgiem Moers-Kapellen w kopalni Niederberg. Mając na uwadze m.in. dostosowanie dynamicznego wpływu eksploatacji górniczej do wrażliwości obiektów powierzchniowych na wpływy górnicze, określono maksymalne dopuszczalne tempo posuwu przodka.
Drugi przykład przedstawia wydobycie ściany 479 z pokładu Johanna leżącego bezpośrednio w strefie nieciągłości Recklinghausen-North i zastosowane zabezpieczenie konstrukcji mostowej autostrady (BAB A43/L225). Metoda Ruhrkohlego została wykorzystana w tym przypadku jako podstawa do modelu matematycznego, który został opracowany do obliczenia maksymalnego poziomego otwarcia strefy nieciągłości i maksymalnego tempa rozwoju szczeliny.
Część artykułu poświęcona jest zjawisku wypiętrzania w wyniku podnoszenia się poziomu wód kopalnianych. Pomimo tego, że nie jest to główny czynnik powodujący szkody związane z górnictwem, jednak tego rodzaju ruchy również należy prognozować. Jak pokazuje przykład dawnej kopalni Königsborn, procesy stochastyczne dobrze nadają się do przewidywania wypiętrzenia gruntu, pod warunkiem wprowadzenia niewielkich korekt w modelu i zastosowania odpowiednich parametrów.
REFERENCES (37)
1.
Bals, R. 1932. Calculation of mining subsidence: Questions and Answers.
2.
Beyer, F. 1945. Über die Vorausbestimmung der beim Abbau flachgelagerter Flötze aufreten den Bodenverfor-mungen.
3.
Bischoff, M., Cete, A., Fritschen, R., Meier, T. 2010. Coal Mining Induced Seismicity in the Ruhr Area, Germany. Pure and Applied Geophysics 167, pp. 63–75. DOI: 10.1007/s00024-009-0001-8.
4.
Budryk, W. 1953. Wyznaczanie wielkości poziomych odkształceń terenu. Archiwum Górnictwa i Hutnictwa 1, pp. 63–74.
5.
Dudek, M. and Tajduś, K. 2021. FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment 100254. DOI: 10.1016/j.gete.2021.100254.
6.
Dudek et al. 2020 – Dudek, M., Tajduś, K., Misa, R. and Sroka, A. 2020. Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377.
7.
Ehrhardt, A. and Sauer, A. 1961. Precalculation of Subsidence, Tilt and Curvature Over Extractions in Flat Formations. Bergbauwissenschaften 8, pp. 415–428.
8.
Fritschen, R. 2001. Predicting mining-induced earth tremors in German coalfield areas. Freiberg University of Mining and Technology.
9.
Grün, E. 1998. Planning of high-performance faces with environmental consideration for the protection of surface structures and subsidence expectations. Freib. Forschungshefte, A847 Bergbau und Geotech.
10.
Grün, E. 1995. Analysis and prediction of discontinuities resulting from mining-related ground movements in the coalfields on the left bank of the Lower Rhine. RWTH Aachen.
11.
Grün et al. 2003 – Grün, E., Pöller, H. and Pohl, F. 2003. Classification of surface structures according to their sensitivity and possibilities for protecting them against mining influences. Markscheidewesen 110, pp. 89–96.
12.
Janson et al. 2020 – Janson, E., Markowska, M., Łabaj, P., Wrana, A. and Zawartka, P. 2020. A Preliminary Assessment of Climate Change Impacts – Implications for Mining Activity in Polish Coal Regions. Archives of Mining Sciences 65, pp. 703–717. DOI: 10.24425/ams.2020.134142.
13.
Jiang et al. 2020 – Jiang, Y.Y., Misa, R., Tajduś, K., Sroka, A. and Jiang, Y.Y. 2020. A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Archives of Mining Sciences 65, pp. 147–158. DOI: 10.24425/ams.2020.132712.
14.
Karmis et al. 2020 – Karmis, M., Agioutantis, Z. and Jarosz, A. 1990. Recent developments in the application of the influence function method for ground movement predictions in the U.S. International Journal of Mining Science and Technology 10, pp. 233–245. DOI: 10.1016/0167-9031(90)90439-Y.
15.
Keinhorst, H. 1925. Calculation of Surface Subsidence. 25 Jahre der Emschergenossenschaft 1900–1925.
16.
Kirby, M.W. 1977. British coal mining industry, 1870–1946: A political and economic history.
17.
Knothe, S. 1957. Observations of surface movements under influence of mining and their theoretical interpretation. [In:] Proceedings of the European Congress on Ground Movement. pp. 210–218.
18.
Knothe, S. 1953. A profile equation for a definitely shaped subsidence trough (Równanie profilu ostatecznie wykształconej niecki osiadania). Archiwum Górnictwa i Hutnictwa 1, pp. 22–38 (in Polish).
19.
Kowalski et al. 2021 – Kowalski, A., Białek, J. and Rutkowski, T. 2021. Caulking of Goafs Formed by Cave-in Mining and its Impact on Surface Subsidence in Hard Coal Mines. Archives of Mining Sciences 66, pp. 85–100. DOI: 10.24425/ams.2021.136694.
20.
Król-Korczak, J. and Brzychczy, E. 2019. Fuzzy system for decision support of post-mining regions reclamation (FSDR). Archives of Mining Sciences 64, pp. 35–50. DOI: 10.24425/ams.2019.126270.
21.
Lian et al. 2011 – Lian, X., Jarosz, A., Saavedra-Rosas, J. and Dai, H. 2011. Extending dynamic models of mining subsidence. Transactions of Nonferrous Metals Society of China 21, pp. s536–s542. DOI: 10.1016/S1003-6326(12)61637-9.
22.
Luo et al. 2021 – Luo, S., Wang, T., Wu, Y., Huangfu, J. and Zhao, H. 2021. Internal Mechanism of Asymmetric Deformation and Failure Characteristics of the Roof for Longwall Mining of a Steeply Dipping Coal Seam. Archives of Mining Sciences 66, pp. 101–124. DOI: 10.24425/ams.2021.136695.
23.
Luo, Y. and Cheng, J. 2009. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams. International Journal of Mining Science and Technology 19, pp. 92–598. DOI: 10.1016/S1674-5264(09)60110-1.
24.
Marcak, H. and Pilecki, Z. 2019. Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain. Archives of Mining Sciences 64, pp. 197–212. DOI: 10.24425/ams.2019.126280.
25.
Müller, D. and Preusse, A. 2018. Use of the area of main influence to fix a relevant boundary for mining damages in Germany. International Journal of Mining Science and Technology 28, pp. 79–83. DOI: 10.1016/j.ijmst.2017.10.004.
26.
Oei et al. 2020 – Oei, P.-Y., Brauers, H. and Herpich, P. 2020. Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018. Climate Policy 20, pp. 963–979. DOI: 10.1080/14693062.2019.1688636.
27.
Pohl, F. 2001. Assessment of surface buildings in the Ruhr coalfield according to their structural sensitivity to mining-induced ground movements. Freiberg University of Mining and Technology.
28.
Preusse, A. and Sroka, A. 2015. Risks posed by rising mine-water levels. Final Report on Research Project FE no. 0760 0000. Herne.
29.
Schmidt-Schleicher, H. 1997. Proposal for recording and assessing historical buildings in subsidence-prone areas. [In:] Workbooks from the Collaborative Research Centre 315 ‘Preserving Historically Important Buildings’. Conference on Mining and Monuments. pp. 77–82.
30.
Sroka, A. 2005. Contribution to the pre-calculation of ground uplift due to rising mine-water levels. [In:] 5th Colloquium on Abandoned Mines. TU Clausthal. pp. 453–464.
31.
Sroka, A. 1993. Setting the face advance rate in terms of mining subsidence engineering. [In:] Proceedings of the Underground Mining School‚ 93. Supplement. MERC PAS, Kraków, pp. 15–39.
32.
Sroka, A. and Grün, E. 1996. 2nd opinion on how mining in 479’s panel in the Johann seam is likely to impact on the BAB A43 bridge over Dorstener Strasse (B225).
33.
Sroka et al. 2015 – Sroka, A., Knothe, S., Tajduś, K. and Misa, R. 2015. Underground exploitations inside safety pillar shafts when considering the effective use of a coal deposit. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 31(3), pp. 93–110. DOI: 10.1515/gospo-2015-27.
34.
Sroka et al. 2018 – Sroka, A., Misa, R. and Tajduś, K. 2018. Calculation of convergence induced rock mass and ground surface movements in salt caverns for storage of liquid and gaseous energy carriers. [In:] Geomechanics and Geodynamics of Rock Masses. CRC Press, pp. 629–634.
35.
Sroka, A. and Preusse, A. 2009. On the prediction of flooding-related ground uplift. [In:] 9th Colloquium on Abandoned Mines. University of Leoben. pp. 184–196.
36.
Walentek, A. 2019. Analysis of the Applicability of the Convergence Control Method for Gateroad Design Based on Conducted Underground Investigations. Archives of Mining Sciences 64, pp. 765–783. DOI: 10.24425/ams.2019.131065.
37.
Zhu et al. 2018 – Zhu, H., He, F., Zhang, S. and Yang, Z. 2018. An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of southwestern China: a typical case study. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34(1), pp. 119–138. DOI: 10.24425/118641.