ORIGINAL PAPER
Selection of the best aggregates to be used in road construction with TOPSIS method
More details
Hide details
1
Konya Technical University, Turkey
2
Ankara Metropolitan Municipality, Turkey
Submission date: 2022-11-26
Final revision date: 2023-04-04
Acceptance date: 2023-04-13
Publication date: 2023-06-12
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(2):145-164
KEYWORDS
TOPICS
ABSTRACT
Road construction has been an ongoing engineering practice throughout human history. Although road construction technologies have changed over time, the raw material used has not changed for centuries, and it seems that it will not change in the upcoming centuries. Although some standards are used to determine the aggregate quality in road construction works, it is often complex and laborious to identify the aggregates that best meet the standards. Long-lasting and high-quality roads can be built and the most suitable aggregate is selected for the road. This study aims to select the most suitable aggregates used in hot-mix asphalt pavement production for road construction. In this study, multi-criteria decision-making methods were used for the selection of the aggregate that provides the best conditions. Aggregates used in constructing roads within the provincial borders of Ankara are produced from six stone quarries. To rank these aggregates and determine the ideal quarry for hot-mix asphalt production, the analytical hierarchy process (AHP) and the technique for order preference by similarity to an ideal solution (TOPSIS) method, which are multi-criteria decision making (MCDM) methods, were used. The results obtained from the tests on aggregates and hot-mix asphalts (HMA) were compared with the the best results based on the maximum and minimum limits determined in the standards. By comparing the the best results of the standards with the test results of the aggregates, weight scores were made for each test. Weight scores were scored and classified using the AHP and TOPSIS multi-criteria decision-making methods. As a result, the aggregate with the highest score and the quarry area represented by the aggregate were determined as the most suitable for hot-mix asphalt construction.
ACKNOWLEDGEMENTS
The authors thank the Ankara Metropolitan Municipality for their contribution to the realization of this study.
METADATA IN OTHER LANGUAGES:
Polish
Dobór najlepszych kruszyw do zastosowania w budownictwie drogowym metodą TOPSIS
kruszywo, kamieniołom, proces hierarchii analitycznej, MCDM, TOPSIS
Budowa dróg była stałą praktyką inżynierską w całej historii ludzkości. Choć technologie budowy dróg zmieniały się na przestrzeni dziejów, to stosowany surowiec nie zmienia się od wieków i wydaje się, że nie zmieni się w kolejnych stuleciach. Chociaż niektóre normy są stosowane do określania jakości kruszyw w robotach drogowych, to często skomplikowane i pracochłonne jest uszeregowanie kruszyw spełniających te normy. Trwałe i wysokiej jakości drogi można budować przy użyciu najodpowiedniejszego kruszywa dobranego do drogi. Niniejsze opracowanie ma na celu wybór najodpowiedniejszych kruszyw do produkcji nawierzchni asfaltowych na gorąco do budowy dróg. W niniejszym badaniu zastosowano wielokryterialne metody decyzyjne do wyboru agregatu, który zapewnia najlepsze warunki. Kruszywa wykorzystywane do budowy dróg w granicach prowincji Ankary produkowane są w sześciu kamieniołomach. Aby uszeregować te agregaty i określić idealny kamieniołom do produkcji gorącej mieszanki asfaltowej, zostały użyte: analityczny proces hierarchiczny (AHP) i technika preferencji zamówień na podstawie podobieństwa do metody idealnego rozwiązania (TOPSIS), które są metodami wielokryterialnego podejmowania decyzji (MCDM). Wyniki uzyskane z badań kruszyw i asfaltów na gorąco (HMA) porównano z najlepszymi wynikami wynikającymi z maksymalnych i minimalnych limitów określonych w normach. Porównując najlepsze wyniki wzorców z wynikami testów agregatów, dla każdego testu wykonano oceny wagowe. Oceny wagowe zostały ocenione i sklasyfikowane przy użyciu wielokryterialnych metod podejmowania decyzji, AHP i TOPSIS. W rezultacie kruszywo z najwyższą punktacją i obszar kamieniołomu reprezentowany przez kruszywo zostały uznane za najbardziej odpowiednie do budowy gorących mieszanek mineralno-asfaltowych.
REFERENCES (34)
1.
Acaroglu et al. 2006 – Acaroglu, O., Ergin, H. and Eskikaya, S. 2006. Analytical hierarchy process for selection of roadheaders. Journal of the Southern African Institute of Mining and Metallurgy 106(8), pp. 569–575.
2.
Ataei et al. 2008 – Ataei, M., Sereshki, F., Jamshidi, M. and Jalali, S.M.E. 2008. Suitable mining method for Golbini No. 8 deposit in Jajarm (Iran) using TOPSIS method. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology 117(1), pp. 1–5, DOI: 10.1179/174328608X343650.
3.
Bazzazi et al. 2009 – Bazzazi, A.A., Osanloo, M. and Karimi, B. 2009. Optimal open pit mining equipment selection using fuzzy multiple attribute decision making approach. Archives of Mining Sciences 54(2), pp. 301–320.
4.
Bilim et al. 2017 – Bilim, N., Çelik, A. and Kekeç, B. 2017. A study in cost analysis of aggregate production as depending on drilling and blasting design. Journal of African Earth Sciences 134, pp. 564–572, DOI: 10.1016/j.jafrearsci.2017.07.024.
5.
Brans, J. and Vincke, P. 1985. A preference ranking organization method: the PROMETHEE method for MCDM. Management Science 31(6), pp. 647–656, DOI: 10.1287/mnsc.31.6.647.
6.
Brauers, W.K.M. and Zavadskas, E.K. 2006. The MOORA method and its application to privatization in a transition economy. Control and Cybernetics 35(2), pp. 445–469.
7.
Chander Balusa, B. and Kumar Gorai, A. 2019. A Comparative Study of Various Multi-criteria Decision-Making Models in Underground Mining Method Selection. Journal of The Institution of Engineers (India): Series D, 100, pp. 105–121, DOI: 10.1007/s40033-018-0169-0.
8.
Chen et al. 2016 – Chen, W. Shihao, T. Min, C. and Yong, Y. 2016. Optimal Selection of a Longwall Mining Method for a Thin Coal Seam Working Face. Arabian Journal for Science and Engineering 41(9), pp. 3771–3781, DOI: 10.1007/s13369-016-2260-x.
9.
Gabus, A. and Fontela, E. 1972. World problems an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Centre.
10.
Ghasvareh et al. 2020 – Ghasvareh, M.A., Safari, M. and Nikkhah, M. 2020. Haulage System Selection for Parvadeh Coal mine Using Multi-Criteria Decision Making Methods. Mining Scince 26, pp. 69–89, DOI: 10.5277/msc192606.
11.
Hwang, C.L. and Yoon, K. 1981. Methods for Multiple Attribute Decision Making. [In:] Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-48318-9_3.
12.
Iphar, M. and Alpay, S. 2019. A mobile application based on multi-criteria decision-making methods for underground mining method selection. International Journal of Mining, Reclamation and Environment 33(7), pp. 480–504, DOI: 10.1080/17480930.2018.1467655.
13.
Javanshirgiv et al. 2017 – Javanshirgiv, M., Moghadder, M. T. and Safari, M. 2017. The selection of appropriate mining method for the Deh Gheybi Granite Quarry Mine using the FTOPSIS method. International Journal of Mining and Mineral Engineering 8(2), pp. 113–130, DOI: 10.1504/IJMME.2017.10005131.
14.
Khanal et al. 1970 – Khanal, S. and Tamrakar, N. K. 1970. Evaluation of quality of crushed-limestone and -siltstone for road aggregates. Bulletin of the Department of Geology 12, pp. 29–42.
15.
Kun et al. 2013 – Kun, M. Malli, T. and Topaloğlu, S. 2013. Evaluation of Wheel Loaders in Open Pit Marble Quarrying by Using the AHP and Topsis Approaches. Archives of Mining Sciences 58(1), pp. 255–267, DOI: 10.2478/amsc-2013-0018 ; ISSN 0860-7001.
16.
Li et al. 2011 – Li, X., Wang, K., Liuz, L., Xin, J., Yang, H. and Gao, C. 2011. Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia Engineering 26, pp. 2085–2091, DOI: 10.1016/j.proeng.2011.11.2410.
17.
Mahdevari et al. 2014 – Mahdevari, S., Shahriar, K. and Esfahanipour, A. 2014. Human health and safety risks management in underground coal mines using fuzzy TOPSIS. Science of the Total Environment 488, pp. 85–99, DOI: 10.1016/j.scitotenv.2014.04.076.
18.
Mikaeil et al. 2009 – Mikaeil, R., Naghadehi, M.Z., Ataei, M. and Khalokakaie, R. 2009. A decision support system using fuzzy analytical hierarchy process (FAHP) and topsis approaches for selection of the optimum underground mining method. Archives of Mining Sciences 54(2), pp. 341-368.
19.
Monjezi et al. 2010 – Monjezi, M., Dehghani, H., Singh, T.N., Sayadi, A.R. and Gholinejad, A. 2010. Application of TOPSIS method for selecting the most appropriate blast design. Arabian Journal of Geosciences 5, pp. 95–101, DOI: 10.1007/s12517-010-0133-2.
20.
Myers, J. and Alpert, M. 1968. Determinant buying attitudes: meaning and measurement. Journal of Marketing 32(1), pp. 13–20, DOI: 10.1177/00222429680320040.
21.
Ooriad et al. 2018 – Ooriad, F.A., Yari, M., Bagherpour, R. and Khoshouei, M. 2018. The development of a novel model for mining method selection in a fuzzy environment; case study: Tazareh coal mine, Semnan province, Iran. Rudarsko Geolosko Naftni Zbornik 33(1), pp. 45–53, DOI: 10.17794/rgn.2018.1.6.
22.
Opricovic, S. 1998. Multicriteria optimization of civil engineering systems. PhD Thesis, Faculty of Civil Engineering, Belgrade, 302 p.
23.
Opricovic, S. and Tzeng, G.H. 2004. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research 156(2), pp. 445–455, DOI: 10.1016/S0377-2217(03)00020-1.
24.
Özgörmüş et al. 2005 – Özgörmüş, E., Mutlu, Ö. and Güner, H. 2005. Bulanık AHP İle Personel Seçimi. 25–27 (in Turkish).
25.
Peters, M.L. and Zelewski, S. 2007. Effizienz-Analyse mit EATWOS. Controlling 19(2), pp. 75–82.
26.
Rahimdel, M.J. and Karamoozian, M. 2014. Fuzzy TOPSIS method to primary crusher selection for Golegohar Iron Mine (Iran). Journal of Central South University 21, pp. 4352–4359, DOI: 10.1007/s11771-014-2435-0.
27.
Roy, B. and Vincke, P. 1981. Multicriteria analysis: survey and new directions. European Journal of Operational Research 8(3), pp. 207–218, DOI: 10.1016/0377-2217(81)90168-5.
28.
Saaty, T.L. 1980. The analytical hierarchy process, planning, priority. [In:] Priority Setting. Resource Allocation, MacGraw-Hill, New York International Book Company.
29.
Saaty, T.L. 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research 48(1), pp. 9–26, DOI: 10.1016/0377-2217(90)90057-I.
30.
Saaty, T.L. 1996. Decision making with dependence and feedback: The analytic network process.
31.
Saki et al. 2020 – Saki, F., Dehghani, H., Jodeiri Shokri, B. and Bogdanovic, D. 2020. Determination of the most appropriate tools of multi-criteria decision analysis for underground mining method selection – a case study. Arabian Journal of Geosciences 13(23), 1271, pp. 1–20, DOI: 10.1007/s12517-020-06233-6.
32.
Sefidmazgi et al. 2012 – Sefidmazgi, N.R., Tashman, L. and Bahia, H. 2012. Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design 13(suppl. 1), DOI: 10.1080/14680629.2012.657045.
33.
Spanidis et al. 2020 – Spanidis, P.M., Roumpos, C. and Pavloudakis, F. 2020. A Multi-criteria approach for the evaluation of low risk restoration projects in continuous surface lignite mines. Energies 13(9), 2179, pp. 1–22, DOI: 10.3390/en13092179.
34.
Yari et al. 2014 – Yari, M., Monjezi, M. and Bagherpour, R. 2014. Selecting the most suitable blasting pattern using AHP-TOPSIS method: Sungun copper mine. Journal of Mining Science 49(6), pp. 967–975, DOI: 10.1134/S1062739149060178.