ORIGINAL PAPER
An assessment of the impact of the degree of the filling of shallow voids on the possibility of sinkhole formation on the surface
 
More details
Hide details
1
Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation
 
 
Submission date: 2022-09-08
 
 
Final revision date: 2022-12-15
 
 
Acceptance date: 2023-01-17
 
 
Publication date: 2023-03-22
 
 
Corresponding author
Ewa Strzałkowska   

Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(1):173-191
 
KEYWORDS
TOPICS
ABSTRACT
The issues covered by the work are important and topical as sinkholes that develop in large numbers over shallow mining excavations pose a great threat to public safety. In Upper Silesia (Poland), the formation of sinkholes can be observed even for a period of over 100 years following the termination of mining works. An effective method of risk elimination consists of filling the voids with a binding material with strength properties similar to those of the rocks surrounding the void. The application of fly ash is very suitable for this purpose, the use of which also has an ecological aspect. The literature studies presented in the paper indicate the possibility of making mixtures with the use of fly ash that has the required strength parameters. The compressive strength of the mixtures after solidification is up to 3 MPa, or even up to 7 MPa, and in some cases, up to 15 MPa. Most of the voids at shallow depths are found in coal seams, in which the compressive strength at shallow depths amounts to approx. 5 MPa. Thus, by filling the void with such material, we can ensure conditions similar to those prevailing before the excavation was made. The paper presents a case study involving the formation of a sinkhole above a dog heading and an ex post forecast made with the use of two selected methods. These methods yielded results affirming that the development of a sinkhole in the considered conditions is certain. Then, using the said methods, the impact of the filling level of the void on the possibility of sinkhole development was analyzed. The obtained results indicated the necessity to fill the void to around 90% with the use of one of the methods and its complete filling with the use of the other method.
METADATA IN OTHER LANGUAGES:
Polish
Ocena wpływu stopnia wypełnienia płytkich pustek na możliwość powstania zapadliska na powierzchni
zapadlisko, likwidacja zagrożenia zapadliskiem
Zagadnienia, których dotyczy praca, są ważne i aktualne, gdyż zapadliska licznie powstające nad płytkimi wyrobiskami górniczymi stanowią duże zagrożenie dla bezpieczeństwa publicznego. Na Górnym Śląsku (Polska) powstawanie zapadlisk obserwuje się nawet przez okres ponad 100 lat od zaprzestania prowadzenia robót górniczych. Skuteczną formą likwidacji zagrożenia jest wypełnianie pustek materiałem wiążącym o własnościach wytrzymałościowych zbliżonych do własności skał otaczających pustkę. Znakomicie do tego celu nadają się popioły lotne, których wykorzystanie posiada również aspekt proekologiczny. Studia literaturowe przedstawione w pracy wskazują na możliwość tworzenia mieszanin z udziałem popiołów lotnych o wymaganych parametrach wytrzymałościowych. Wytrzymałość na ściskanie mieszanin po zestaleniu wynosi do 3 MPa, a nawet do 7 MPa, a w niektórych przypadkach do 15 MPa. Większość pustek na małych głębokościach występuje w pokładach węgla, którego wytrzymałość na ściskanie wynosi około 5 MPa na małych głębokościach. Zatem wypełniając takim materiałem pustkę, można zapewnić warunki zbliżone do tych, jakie panowały przed wykonaniem wyrobiska. W pracy przedstawiono studium przypadku powstania zapadliska nad wyrobiskiem korytarzowym i wykonano prognozę ex post przy zastosowaniu dwóch wybranych metod. Metody te pozwoliły na uzyskanie wyników mówiących o pewności powstania zapadliska w rozpatrywanych warunkach. W dalszej kolejności analizowano przy ich zastosowaniu wpływ stopnia wypełnienia pustki na możliwość powstania zapadliska. Uzyskane wyniki wskazały na konieczność wypełnienia pustki w około 90% przy zastosowaniu jednej z metod i całkowitego jej wypełnienia przy zastosowaniu drugiej z metod.
 
REFERENCES (60)
1.
Agarwal, S.K. 2006. Pozzolanic activity of various siliceous materials. Cement and Concrete Research 36(9), pp. 1735–1739, DOI: 10.1016/j.cemconres.2004.06.025.
 
2.
Ahmaruzzaman, M. 2010. A review on the utilization of fly ash. Progress in Energy and Combustion Science 36(3), pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003.
 
3.
Basu et al. 2009 – Basu, M., Pande, M., Bhadoria, P.B.S. and Mahapatra, S.C. 2009. Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science 19(10), pp. 1173–1186, DOI: 10.1016/j.pnsc.2008.12.006.
 
4.
Bhatt et al. 2019 – Bhatt, A., Priyadarshini, S., Mohanakrishnan, A.A., Abri, A., Sattler, M. and Techapaphawit, S. 2019. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials 11, pp. 1–11, DOI: 10.1016/j.cscm.2019.e00263.
 
5.
Canbulat et al. 2017 – Canbulat, I., Zhang, C., Black, K., Johnston, J. and McDonald, S. 2017. Assessment of Sinkhole Risk in Shallow Coal Mining. Proceeding of the 10th Triennial Conference on Mine Subsidence.
 
6.
Chudek et al. 1988 – Chudek, M., Janusz, W. and Zych, J. 1988. Studium dotyczące rozpoznania tworzenia się i prognozowania deformacji nieciągłych pod wpływem podziemnej eksploatacji złóż. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo 141, Gliwice (in Polish).
 
7.
Dudas, M.J. 1981. Long-term leachability of selected elements from fly ash. Environmental Science and Technology 15(7), pp. 840−843.
 
8.
Giergiczny et al. 2013 – Giergiczny, Z., Garbacik, A. and Ostrowski, M. Pozzolanic and hydraulic activity of calcareous fly ash. Roads and Bridges – Drogi i Mosty 12, pp. 71–81.
 
9.
Huang et al. 2021 – Huang, T., Huang, F. and Zhou, H. 2021. Experimental Study on Fluid Properties of Cement-Fly Ash Slurry Subjected to Multifactors. Geofluids 17, DOI: 10.1155/2021/9924895.
 
10.
Izquierdo, M. and Querol, X. 2012. Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology 94, pp. 54–66, DOI: 10.1016/j.coal.2011.10.006.
 
11.
Jiang et al. 2017 – Jiang, N., Zhao, J., Sun. X.,  Bai, L. and Wang, C. 2017. Use of fly-ash slurry in backfill grouting in coal mines. Heliyon 3(11), DOI: 10.1016/j.heliyon.2017.e00470.
 
12.
Joshi, R.C. and Malhotra, V.M. 1985. Relationship Between Pozzolanic Activity and Chemical and Physical Characteristics of Selected Canadian Fly Ashes. MRS Online Proceedings Library 65, pp. 167–170, DOI: 10.1557/PROC-65-167.
 
13.
Kaniraj, S.R. and Havanagi, V.G. 1999. Compressive strength of cement stabilized fly ash-soil mixtures. Cement and Concrete Research 29(5), pp. 673–677, DOI: 10.1016/S0008-8846(99)00018-6.
 
14.
Kapuściński, T. and Strzałkowska, E. 2005. Extraction of basic and trace elements from combustion wastes located in mining excavations (Ługowalność pierwiastków podstawowych i śladowych z odpadów paleniskowych lokowanych w wyrobiskach górniczych). Gospodarka Surowcami Mineralnymi ‒ Mineral Resources Management 21(3), pp. 37–46 (in Polish).
 
15.
Kidybiński, A. 1982. Fundamentals of mining geotechnics (Podstawy geotechniki kopalnianej). Katowice: Wydawnictwo Śląsk (in Polish).
 
16.
Kim et al. 2005 – Kim, B., Prezzi, M. and Salgado, R. 2005. Geotechnical Properties of Fly Ash and Bottom Ash Mixtures for Use in Highway Embankments. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 131(7), pp. 914–924.
 
17.
Kratzsch, H. 1983. Mining Subsidence Engineering. New York: Springer-Verlag. Berlin, Heidelberg.
 
18.
Kretschmann et al. 2017 – Kretschmann, J., Efremenkov, A.B. and Khoreshok, A.A. 2017. From Mining to Post-Mining: The Sustainable Development Strategy of the German Hard Coal Mining Industry. IOP Conf. Ser.: Earth Environ. Sci., DOI: 10.1088/1755-1315/50/1/012024.
 
19.
Kubański, A. 2008. Land treatment technologies for construction (Technologie uzdatniania terenów dla budownictwa). Nowoczesne Budownictwo Inżynieryjne, pp. 68–71 (in Polish).
 
20.
Kwiatek, J. 2002. Removal of the effects of mining – Mining damage (Usuwanie skutków eksploatacji – Szkody górnicze). Biuletyn Górniczy 5–6, pp. 83–84 (in Polish).
 
21.
Lee et al. 2017 – Lee, J.K., Ko, J. and Kim, Y.S. Rheology of fly ash mixed tailings slurries and applicability of prediction models. Minerals 7(9), DOI: 10.3390/min7090165.
 
22.
Lee et al. 2003 – Lee, S.H., Kim, H.J., Sakai, E. and Daimon, M. 2003. Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes. Cement and Concrete Research 33(5), DOI: 10.1016/S0008-8846(02)01054-2.
 
23.
Łabanowicz, H. 1976. The use of fly ashes to eliminate voids in shallow mining excavations (Wykorzystanie popiołów lotnych do likwidacji pustek w płytkich wyrobiskach górniczych). Ochrona Terenów Górniczych 3 (in Polish).
 
24.
Marsh, B.K. and Day, R.L. 1988. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cement and Concrete Research 18(2), pp. 301–310, DOI: 10.1016/0008-8846(88)90014-2.
 
25.
Mazurkiewicz, M. 1990. Technological and environmental aspects of using solid industrial waste to fill voids in underground mines (Technologiczne i środowiskowe aspekty stosowania stałych odpadów przemysłowych do wypełniania pustek w kopalniach podziemnych). Zeszyty Naukowe AGH 152 (in Polish).
 
26.
Mazurkiewicz et al. 1997 – Mazurkiewicz, M., Piotrowski, Z. and Tajduś, A. 1997. Locating waste in underground mines, part 1 (Lokowanie odpadów w kopalniach podziemnych cz. 1). Biblioteka Szkoły Eksploatacji Podziemnej 1997 5 (in Polish).
 
27.
Mirza et al. 2002 – Mirza, J., Mirza, M.S., Roy, V. and Saleh, K. 2002. Basic rheological and mechanical properties of high-volume fly ash grouts. Construction and Building Materials 16(6), pp. 353–363, DOI: 10.1016/S0950-0618(02)00026-0.
 
28.
Mishra, M.K. 2003. Experimental and Numerical analysis of behaviour of model pillars trapped with reinforced fly ash composites, Ph.D thesis, Indian Institute of Technology, Kharagpur, India.
 
29.
Mishra, M.K. and Rao, K.U.M. 2006. Geotechnical Characterisation of Fly ash Composites for Backfilling Mine Voids. Geotechnical and Geological Engineering 24(6), pp. 1749–1765.
 
30.
Moghal, A.A.B. 2017. State-of-the-Art Review on the Role of Fly Ashes in Geotechnical and Geoenvironmental Applications. Journal of Materials in Civil Engineering 29(8).
 
31.
Naik et al. 2011 – Naik, H.K., Mishra, M.K. and Rao, K.U.M. 2011. Influence of Chemical Reagents on Rheological Properties of Fly Ash-Water Slurry at Varying Temperature Environment. Coal Combustion and Gasification Products 3, pp. 83–93, DOI: 10.4177/CCGP-D-11-00015.1.
 
32.
Pandian, N.S. 2004. Fly ash characterization with reference to geotechnical applications. Journal of the Indian Institute of Science 84(6), pp. 189–216.
 
33.
Peng, S.S. 2008. Coal Mine Ground Control. Dept. of Mining Engineering, College of Engineering and Mineral Resources. West Virginia University. Morgantown. USA. 3rd edition.
 
34.
Peng, S.S. ed. 2020. Surface Subsidence Engineering: Theory and Practice. CRC Press.
 
35.
Ramme, B. and Tharaniyil, M. 2004. Coal Combustion Products Utilization Handbook. We Energies.
 
36.
Reddy et al. 2018 – Reddy, C.S., Mohanty, S. and Shaik, R. 2018. Physical, chemical and geotechnical characterization of fly ash, bottom ash and municipal solid waste from Telangana State in India. International Journal of Geo-Engineering 9(23), DOI: 10.1186/s40703-018-0093-z.
 
37.
Sahu, P. and Lokhande, R.D. 2015. An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth and Planetary Science 11, pp. 63–75, DOI: 10.1016/j.proeps.2015.06.009.
 
38.
Sałustowicz, A. 1956. Outline of rock mass mechanics (Zarys mechaniki górotworu). Wydawnictwo Śląsk (in Polish).
 
39.
Sebastia et al. 2003 – Sebastia, M., Olmo, I.F. and Irabien, A. 2003. Neural network prediction of unconfined compressive strength of coal fly ash–cement mixtures. Cement and Concrete Research 33(8), pp. 1137–1146, DOI: 10.1016/S0008-8846(03)00019-X.
 
40.
Shaheen et al. 2014 – Shaheen, S.M., Hooda, P.S. and Tsadilas, Ch.D. 2014. Opportunities and challenges in the use of coal fly ash for soil improvements e A review. Journal of Environmental Management 145, pp. 249–267, DOI: 10.1016/j.jenvman.2014.07.005.
 
41.
Sivapullaiah, P.V. and Moghal A.A.B. 2011. Effect of Pozzolanic Reactivity on Compressibility Characteristics of Stabilised Low Lime Fly Ashes. Compressibility of low lime fly ashes. Geotechnical and Geological Engineering 29(5), pp. 665–673, DOI: 10.1007/s10706-011-9408-y.
 
42.
Singh, K.B. and Dhar, B.B. 1997. Sinkhole subsidence due to mining. Geotechnical and Geological Engineering 15, pp. 327–341, DOI: 10.1023/A:1018471911108.
 
43.
Strozik, G. 2015. Filling underground voids in the rock mass disturbed by mining operations (Wypełnianie pustek podziemnych w górotworze naruszonym eksploatacją górniczą). Gliwice: Politechnika Śląska (in Polish).
 
44.
Strozik et al. 2016 – Strozik, G., Jendruś, R., Manowska, A. and Popczyk, M. 2016. Mining Subsidence as a Post- -Mining Effect in the Upper Silesia Coal Basin. Polish Journal of Environmental Studies 25(2), pp. 777–785, DOI: 10.15244/pjoes/61117.
 
45.
Strozik, G. 2018. The use of fly ash for filling the shallow underground ore mine works on the example of the mine reclamation area in Piekary Śląskie. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34 (1), pp. 139–154, DOI: 10.24425/118637.
 
46.
Stryczek, S. and Gonet, A. 2000. Geoengineering (Geoinżynieria). Studia, Rozprawy, Monografie 71, Kraków: MEERI PAS (in Polish).
 
47.
Strzałkowska, E. 2021. Fly ash – a valuable material for the circular economy. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(2), pp. 49–62, DOI: 10.24425/gsm.2021.137563.
 
48.
Strzałkowski, P. 2015. Mathematical model of forecasting the formation of sinkhole using Salustowicz’s theory. Archives of Mining Sciences 1, pp. 63–71, DOI: 10.1515/amsc-2015-0005.
 
49.
Strzałkowski, P. 2017. Proposal of predicting formation of sinkholes with an exemplary application. Journal of Mining Science 53, pp. 53–58, DOI: 10.1134/S1062739117011835.
 
50.
Strzałkowski, P. 2019. Sinkhole formation hazard assessment. Environmental Earth Sciences 78(9), DOI: 10.1007/s12665-018-8002-5.
 
51.
Strzałkowski, P. and Litwa, P. 2021. Environmental protection problems in the areas of former mines with emphasis on sinkholes. Selected examples. International Journal of Environmental Science and Technology 18, pp. 771–780, DOI: 10.1007/s13762-020-02860-4.
 
52.
Szwalec et al. 2017 – Szwalec, A., Gruchot, A., Mundała, P., Zawisza, E. and Kędzior, R. 2017. Physicochemical and geotechnical properties of an ash-slag mixture deposited on a landfill in terms of its use in engineering. Geology, Geophysics and Environment 43(2), pp. 127–137, DOI: 10.7494/geol.2017.43.2.127.
 
53.
Ścigała, R. and Szafulera, K. 2019. Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions – case study. Bulletin of Engineering Geology and the Environment 79(327), pp. 2059–2068, DOI: 10.1007/s10064-019-01681-1.
 
54.
Tajduś et al. 2012 – Tajduś, A., Cała, M. and Tajduś, K. 2012. Geomechanics in underground construction. Design and construction of tunnels (Geomechanika w budownictwie podziemnym. Projektowanie i budowa tuneli). Kraków: AGH (in Polish).
 
55.
Tangpagasit et al. 2005 – Tangpagasit, J., Cheerarot, R., Jaturapitakkul, Ch. and Kiattikomol, K. 2005. Packing effect and pozzolanic reaction of fly ash in mortar. Cement and Concrete Research 35(6), pp. 1145–1151, DOI: 10.1016/j.cemconres.2004.09.030.
 
56.
Thomas, M.D.A. 2007. Optimizing the use of fly ash in concrete. Portland Cement Association.
 
57.
Tian et al. 2018 – Tian, Q., Guo, B., Nakama, S. and Sasaki, K. 2018. Distributions and Leaching Behaviors of Toxic Elements in Fly Ash. ACS Omega 3(10), pp. 13055–13064, DOI: 10.1021/acsomega.8b02096, PMID: 31458026, PMCID:PMC6644505.
 
58.
Uliasz-Bocheńczyk et al. 2015 ‒ Uliasz-Bocheńczyk, A., Mazurkiewicz, M. and Mokrzycki, E. 2015. Fly ash from energy production ‒ a waste, byproduct and raw material. Gospodarka Surowcami Mineralnymi ‒ Mineral Resources Management 31(4), pp. 139−150. DOI: 10.1515/gospo-2015-0042.
 
59.
Whittaker, B.N. and Reddish, D.J. 1989. Subsidence Occurrence, Prediction and Control. Developments in Geotechnical Engineering. Elsevier, Amsterdam, Oxford, New York, Tokyo.
 
60.
Yao et al. 2015 – Yao, Z.T., Ji, X.S., Sarker P.K., Tang, J.H., Ge, L.Q., Xia, M.S. and Xi, Y.Q. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews 141, pp. 105–121, DOI: 10.1016/j.earscirev.2014.11.016.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top