ORIGINAL PAPER
Analysis of the use of polymer composition in the implementation of flow-correcting technologies
 
More details
Hide details
1
Satbayev University
 
2
Kazakh-British Technical University
 
 
Submission date: 2024-10-18
 
 
Final revision date: 2025-02-10
 
 
Acceptance date: 2025-03-13
 
 
Publication date: 2025-06-11
 
 
Corresponding author
Bibinur Akhymbayeva   

Satbayev University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2025;41(2):73-95
 
KEYWORDS
TOPICS
ABSTRACT
This study investigates the effectiveness of various polymer types, including hydrophobically modified polymers, polysaccharides, and synthetic polyacrylamides, in enhancing oil recovery and reducing environmental impact. This research aims to comprehensively evaluate the effectiveness of polymer compositions in flow-correcting technologies for oil production. Experimental research conducted at Satbayev University in 2024 evaluated polymer solutions under simulated high-temperature and high-salinity reservoir conditions, examining their potential to improve fluid viscosity, control filtration processes, and optimize hydrocarbon extraction. The research revealed significant technological advantages of polymer compositions, demonstrating their ability to create stable emulsions, reduce water recovery, and improve oil displacement profiles. Hydrophobically modified polymers increased reservoir fluid viscosity by 30%, while synthetic polyacrylamides showed remarkable adaptability to diverse geological conditions. Economic analysis indicated that polymer technologies could increase oil recovery by approximately 43% without requiring additional well drilling, thus reducing capital expenditures. Despite challenges related to temperature stability and economic considerations, the study concludes that polymer compositions represent a promising strategy for sustainable and efficient oil production, offering technological flexibility and improved resource management.
FUNDING
This research was financially supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (BR21881822 “Development of technical solutions for optimisation of geological and technical operations during well drilling and oil production at the late stage of field exploitation” 2023–2025).
CONFLICT OF INTEREST
The Authors have no conflict of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Analiza wykorzystania składu polimerów we wdrażaniu technologii korygujących przepływ
produkcja ropy, polisacharydy, guma ksantanowa, odzysk wody, profil filtracji
Niniejsze analiza bada skuteczność różnych typów polimerów, w tym polimerów modyfikowanych hydrofobowo, polisacharydów i syntetycznych poliakrylamidów, w zwiększaniu odzysku ropy naftowej i zmniejszaniu wpływu na środowisko. Celem tych badań jest kompleksowa ocena skuteczności składów polimerów w technologiach korygujących przepływ w produkcji ropy naftowej. Badania eksperymentalne przeprowadzone na Uniwersytecie Satbayeva w 2024 r. oceniały roztwory polimerów w symulowanych warunkach złoża o wysokiej temperaturze i wysokim zasoleniu, badając ich potencjał w zakresie poprawy lepkości cieczy, kontrolowania procesów filtracji i optymalizacji ekstrakcji węglowodorów. Badania ujawniły znaczące zalety technologiczne kompozycji polimerowych, wykazując ich zdolność do tworzenia stabilnych emulsji, zmniejszania odzysku wody i poprawy profili wypierania ropy. Polimery modyfikowane hydrofobowo zwiększyły lepkość płynu złożowego o 30%, podczas gdy syntetyczne poliakrylamidy wykazały niezwykłą zdolność adaptacji do różnych warunków geologicznych. Analiza ekonomiczna wskazała, że technologie polimerowe mogą zwiększyć wydobycie ropy o około 43% bez konieczności dodatkowego wiercenia odwiertów, co zmniejsza nakłady inwestycyjne. Pomimo wyzwań związanych ze stabilnością temperatury i względami ekonomicznymi, badanie stwierdza, że kompozycje polimerowe stanowią obiecującą strategię zrównoważonej i wydajnej produkcji ropy, oferując elastyczność technologiczną i lepsze zarządzanie zasobami.
REFERENCES (46)
1.
Abou-alfitooh, S.A. and El-hoshoudy, A.N. 2024. Eco-friendly modified biopolymers for enhancing oil production: A review. Journal of Polymers and the Environment 32, pp. 2457–2483, DOI: 10.1007/s10924-023-03132-1.
 
2.
Afolabi et al. 2022 – Afolabi, F., Mahmood, S.M., Yekeen, N., Akbari, S. and Sharifigaliuk, H. 2022. Polymeric surfactants for enhanced oil recovery: A review of recent progress. Journal of Petroleum Science and Engineering 208, DOI: 10.1016/j.petrol.2021.109358.
 
3.
Akhymbayeva, B. 2024. Employment of mud-pulse generator for improvement of efficiency of a wellbore producing in complex mining and geological conditions. Petroleum Research 9(1), pp. 92–97, DOI: 10.1016/j.ptlrs.2023.07.004.
 
4.
Akhymbayeva et al. 2022 – Akhymbayeva, B., Nauryzbayeva, D., Mauletbekova, B. and Ismailova, J. 2022. Peculiarities of drilling hard rocks using hydraulic shock technology. Scientific Bulletin of the National Mining University 5, pp. 20–25, DOI: 10.33271/nvngu/2022-5/020.
 
5.
Al Christopher et al. 2021 – Al Christopher, C., da Silva, Í.G., Pangilinan, K.D., Chen, Q., Caldona, E.B. and Advincula, R.C. 2021. High performance polymers for oil and gas applications. Reactive and Functional Polymers 162, DOI: 10.1016/j.reactfunctpolym.2021.104878.
 
6.
Al-Anssari et al. 2021 – Al-Anssari, S., Ali, M., Alajmi, M., Akhondzadeh, H., Khaksar Manshad, A., Kalantariasl, A., Iglauer, S. and Keshavarz, A. 2021. Synergistic effect of nanoparticles and polymers on the rheological properties of injection fluids: Implications for enhanced oil recovery. Energy & Fuels 35(7), pp. 6125–6135, DOI: 10.1021/acs.energyfuels.1c00105.
 
7.
Ali et al. 2022 – Ali, I., Ahmad, M. and Ganat, T. 2022. Biopolymeric formulations for filtrate control applications in water-based drilling muds: A review. Journal of Petroleum Science and Engineering 210, DOI: 10.1016/j.petrol.2021.110021.
 
8.
Aliyeva et al. 2024 – Aliyeva, I.K., Aliyeva, E.R., Mustafayeva, E.A., Karimova, N.K. and Rahimova, K.E. 2024. An investigation of the stability of polymer compositions at constant electric field. International Journal of Modern Physics B 2550094, DOI: 10.1142/S0217979225500948.
 
9.
Asyraf et al. 2022 – Asyraf, M.R.M., Ishak, M.R., Syamsir, A., Nurazzi, N.M., Sabaruddin, F.A., Shazleen, S.S., Norrrahim, M.N.F., Rafidah, M., Ilyas, R.A., Rashid, M.Z.A. and Razman, M.R. 2022. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. Journal of Materials Research and Technology 17, pp. 33–65, DOI: 10.1016/j.jmrt.2021.12.122.
 
10.
Azin et al. 2022 – Azin, R., Izadpanahi, A. and Zahedizadeh, P. 2022. Basics of oil and gas flow in reservoirs. [In:] Fundamentals and Practical Aspects of Gas Injection. Springer, pp. 73–142.
 
11.
Bagasharova et al. 2015 – Bagasharova, Z.T., Abdelmaksoud, A.S., Abdugaliyeva, G.Y., Sabirova, L.B. and Moldabayeva, G.Z. 2015. Recovery of water aquifers after the impact of in-situ leaching of Uranium. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 1(4), pp. 19–26.
 
12.
Balaga, D.K. and Kulkarni, S.D. 2022. A review of synthetic polymers as filtration control additives for water-based drilling fluids for high-temperature applications. Journal of Petroleum Science and Engineering 215, DOI: 10.1016/j.petrol.2022.110712.
 
13.
Bashir et. 2022 – Bashir, A., Haddad, A.S. and Rafati, R. 2022. A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: Analyses of key influencing factors. Petroleum Science 19(3), pp. 1211–1235, DOI: 10.1016/j.petsci.2021.11.021.
 
14.
Bhatia et al. 2021 – Bhatia, S.K., Bhatia, R.K., Jeon, J.M., Pugazhendhi, A., Awasthi, M.K., Kumar, D., Kumar, G., Yoon, J.J. and Yang, Y.H. 2021. An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies. Fuel 285, DOI: 10.1016/j.fuel.2020.119117.
 
15.
Bibinur et al. 2021 – Bibinur, S., Akhymbayeva, Daniyar, G., Akhymbayev, Dilda, K., Nauryzbayeva, Bulbul, K. and Mauletbekova. 2021. The process of crack propagation during rotary percussion drilling of hard rocks. Periodicals of Engineering and Natural Sciences 9(4), pp. 392–416, DOI: 10.21533/pen.v9i4.2295.
 
16.
Bliznjuk et al. 2022 – Bliznjuk, O., Masalitina, N., Myronenko, L., Zhulinska, O., Denisenko, T., Nekrasov, S., Stankevych, S., Bragin, O., Romanov, O. and Romanova, T. 2022. Determination of rational conditions for oil extraction from oil hydration waste. Eastern-European Journal of Enterprise Technologies 1(6-1150), pp. 17–23, DOI: 10.15587/1729-4061.2022.251034.
 
17.
Ciula et al. 2024 – Ciula, J., Generowicz, A., Oleksy-Gebczyk, A., Gronba-Chyla, A., Wiewiorska, I., Kwasnicki, P., Herbut, P. and Koval, V. 2024. Technical and Economic Aspects of Environmentally Sustainable Investment in Terms of the EU Taxonomy. Energies 17(10), DOI: 10.3390/en17102239.
 
18.
Davoodi et al. 2023 – Davoodi, S., Al-Shargabi, M., Wood, D.A., Rukavishnikov, V.S. and Minaev, K.M. 2023. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review. Journal of Molecular Liquids 371, DOI: 10.1016/j.molliq.2022.121117.
 
19.
Deryaev, A.R. 2023. Features of forecasting abnormally high reservoir pressures when drilling wells in the areas of Southwestern Turkmenistan. SOCAR Proceedings 2023, pp. 7–12, DOI: 10.5510/OGP2023SI200872.
 
20.
Deryaev, A.R. 2024. Drilling fluids for drilling wells in complex geological conditions in oil and gas fields of Turkmenistan. Neftyanoe Khozyaystvo – Oil Industry 2024(4), pp. 32–36, DOI: 10.24887/0028-2448-2024-4-32-36.
 
21.
Dinzhos et al. 2020 – Dinzhos, R., Fialko, N., Prokopov, V., Sherenkovskiy, Yu., Meranova, N., Koseva, N., Korzhik, V., Parkhomenko, O. and Zhuravskaya, N. 2020. Identifying the influence of the polymer matrix type on the structure formation of microcomposites when they are filled with copper particles. Eastern-European Journal of Enterprise Technologies 5(6-107), pp. 49–57.
 
22.
Dupuis, G. and Nieuwerf, J. 2020. A Cost-Effective EOR Technique To Reduce Carbon Intensity With Polymer Flooding and Modular Skids. Published in the Journal of Petroleum Technology August 2020. [Online] https://www.snfchina.com/wp-co... [Accessed: 2025-02-05].
 
23.
Furtado 2022 – Furtado, I.F., Sydney, E.B., Rodrigues, S.A. and Sydney, A.C. 2022. Xanthan gum: Applications, challenges, and advantages of this asset of biotechnological origin. Biotechnology Research and Innovation Journal 6(1), DOI: 10.4322/biori.202205.
 
24.
Gbadamosi 2022 – Gbadamosi, A., Patil, S., Kamal, M.S., Adewunmi, A.A., Yusuff, A.S., Agi, A. and Oseh, J. 2022. Application of polymers for chemical enhanced oil recovery: A review. Polymers 14(7), DOI: 10.3390/polym14071433.
 
25.
Gowthaman et al. 2021 – Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. and Gopi, S. 2021. Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. [In:] Biopolymers and their Industrial Applications: From Plant, Animal, and Marine Sources, to Functional Products. Elsevier, pp. 351–372.
 
26.
Hassan et al. 2022 – Hassan, A.M., Al-Shalabi, E.W. and Ayoub, M.A. 2022. Updated perceptions on polymer-based enhanced oil recovery toward high-temperature high-salinity tolerance for successful field applications in carbonate reservoirs. Polymers 14(10), DOI: 10.3390/polym14102001.
 
27.
Ivanchina et al. 2019 – Ivanchina, E.D.,Chuzlov, V.A., Ivanchin, N.R., Borissov, A., Seitenov, G.Z. and Dusova, R.M. 2019. Mathematical modeling of the process catalytic isomerization of light Naphtha. Petroleum and Coal 61(2), pp. 413–417.
 
28.
Kang et al. 2021 – Kang, W., Kang, X., Lashari, Z.A., Li, Z., Zhou, B., Yang, H., Sarsenbekuly, B. and Aidarova, S. 2021. Progress of polymer gels for conformance control in oilfield. Advances in Colloid and Interface Science 289, DOI: 10.1016/j.cis.2021.102363.
 
29.
Lai et al. 2021 – Lai, N., Zhao, J., Zhu, Y., Wen, Y., Huang, Y. and Han, J. 2021. Influence of different oil types on the stability and oil displacement performance of gel foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects 630, DOI: 10.1016/j.colsurfa.2021.127674.
 
30.
Loo et al. 2021 – Loo, S.L., Vásquez, L., Athanassiou, A. and Fragouli, D. 2021. Polymeric hydrogels – A promising platform in enhancing water security for a sustainable future. Advanced Materials Interfaces 8(24), DOI: 10.1002/admi.202100580.
 
31.
Ma et al. 2021 – Ma, J., Pang, S., Zhang, Z., Xia, B. and An, Y. 2021. Experimental study on the polymer/graphene oxide composite as a fluid loss agent for water-based drilling fluids. ACS Omega 6(14), pp. 9750–9763, DOI: 10.1021/acsomega.1c00374.
 
32.
Mahajan et al. 2021 – Mahajan, S., Yadav, H., Rellegadla, S. and Agrawal, A. 2021. Polymers for enhanced oil recovery: Fundamentals and selection criteria revisited. Applied Microbiology and Biotechnology 105, pp. 8073–8090, DOI: 10.1007/s00253-021-11618-y.
 
33.
Moldabayeva et al. 2021 – Moldabayeva, G.Z., Suleimenova, R.T., Akhmetov, S.M., Shayakhmetova, Z.B. and Suyungariyev, G.E. 2021. The process of monitoring the current condition of oil recovery at the production fields in Western Kazakhstan. Journal of Applied Engineering Science 19(4), pp. 1099–1107, DOI: 10.5937/jaes0-30840.
 
34.
Moldabayeva et al. 2021 – Moldabayeva, G.Zh., Suleimenova, R.T., Bimagambetov, K.B., Logvinenko, A. and Tuzelbayeva, S.R. 2021. Experimental studies of chemical and technological characteristics of cross-linked polymer systems applied in flow-diversion technologies. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 4(448), pp. 50–58, DOI: 10.32014/2021.2518-170X.81.
 
35.
Ngouangna et al. 2022 - Ngouangna, E.N., Jaafar, M.Z., Norddin, M.M., Agi, A., Oseh, J.O. and Mamah, S. 2022. Surface modification of nanoparticles to improve oil recovery Mechanisms: A critical review of the methods, influencing Parameters, advances and prospects. Journal of Molecular Liquids 360, DOI: 10.1016/j.molliq.2022.119502.
 
36.
Salam et al. 2024 – Salam, A.H., Alsaif, B., Hussain, S.M.S., Khan, S., Kamal, M.S., Patil, S., Al-Shalabi, E.W. and Hassan, A.M. 2024. Advances in understanding polymer retention in reservoir rocks: A comprehensive review. Polymer Reviews 64(4), pp. 1387–1413, DOI: 10.1080/15583724.2024.2373925.
 
37.
Seright et al. 2021 – Seright, R.S., Wavrik, K.E., Zhang, G. and AlSofi, A.M. 2021. Stability and behavior in carbonate cores for new enhanced-oil-recovery polymers at elevated temperatures in hard saline brines. SPE Reservoir Evaluation & Engineering 24(1), pp. 1–18, DOI: 10.2118/200324-PA.
 
38.
Silva et al. 2021 – Silva, J.A.C., Grilo, L.M., Gandini, A. and Lacerda, T.M. 2021. The prospering of macromolecular materials based on plant oils within the blooming field of polymers from renewable resources. Polymers 13(11), DOI: 10.3390/polym13111722.
 
39.
Tavakkoli et al. 2022 – Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A.M. and Junin, R. 2022. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 312, DOI: 10.1016/j.fuel.2021.122867.
 
40.
Thekkuden et al. 2021 – Thekkuden, D.T., Mourad, A.H.I. and Bouzid, A.H. 2021. Failures and leak inspection techniques of tube-to-tubesheet joints: A review. Engineering Failure Analysis 130, DOI: 10.1016/j.engfailanal.2021.105798.
 
41.
Tymkiv et al. 2024 – Tymkiv, D., Hrudz, V., Tutko, R. and Tutko, T. 2024. Forced oscillations of an oil pipeline at an overhead crossing during sequential pumping of various oil products. Prospecting and Development of Oil and Gas Fields 24(1), pp. 32–43, DOI: 10.69628/pdogf/1.2024.32.
 
42.
Wang et al. 2021 – Wang, J., Shi, L., Zhu, S., Xiong, Y. and Liu, Q. 2021. Effect of hydrophobic association on the flow resistance of polymer solutions. AIP Advances 11(6), DOI: 10.1063/5.0050321.
 
43.
Wang et al. 2022 – Wang, X., Liu, W., Shi, L., Liang, X., Wang, X., Zhang, Y., Wu, X., Gong, Y., Shi, X. and Qin, G. 2022. Application of a novel amphiphilic polymer for enhanced offshore heavy oil recovery: Mechanistic study and core displacement test. Journal of Petroleum Science and Engineering 215, DOI: 10.1016/j.petrol.2022.110626.
 
44.
Yadav et al. 2021 – Yadav, P., Ismail, N., Essalhi, M., Tysklind, M., Athanassiadis, D. and Tavajohi, N. 2021. Assessment of the environmental impact of polymeric membrane production. Journal of Membrane Science 622, DOI: 10.1016/j.memsci.2020.118987.
 
45.
Yuan et al. 2021 – Yuan, Z., Chen, X. and Yu, D. 2021. Recent advances in elongational flow dominated polymer processing technologies. Polymers 13(11), DOI: 10.3390/polym13111792.
 
46.
Zhao et al. 2021 – Zhao, Y., Yin, S., Seright, R.S., Ning, S., Zhang, Y. and Bai, B. 2021. Enhancing heavy- -oil-recovery efficiency by combining low-salinity-water and polymer flooding. SPE Journal 26(3), pp. 1535–1551, DOI: 10.2118/204220-PA.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top