ORIGINAL PAPER
Mineralogy and Geochemistry of Upper Cretaceous Mazıdağı Phosphorite Deposits from the Northern Arabian Plate (Mardin, Turkey)
 
 
More details
Hide details
1
Batman University
 
 
Submission date: 2023-02-24
 
 
Final revision date: 2023-04-27
 
 
Acceptance date: 2023-05-22
 
 
Publication date: 2023-06-12
 
 
Corresponding author
Sema Tetiker   

Batman University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(2):37-69
 
KEYWORDS
TOPICS
ABSTRACT
In the Mardin-Mazıdağı region, which corresponds to the northern Arabian Plate, layers containing marine phosphorite rocks are found within the Karababa Formation (Upper Cretaceous). The Karataş member contains phosphorites and carbonate rocks with nodular chert geodes and fossils. The phosphorite and micritic limestones contain invertebrate fossil fragments and materials such as optical isotropic pelletic apatite minerals, angular/subangular and plated fish bone fragments, and brachiopod shells. SEM (scanning electron microscopy) results show that the apatite minerals are either spherical or ellipsoidal in shape and their size varies between 100–200 µm. According to X-ray diffraction (XRD) examinations, the rocks contain apatite (carbonate rich fluorapatite; CFA), carbonate (calcite, dolomite), silica (quartz and opal-CT), little feldspar, and clay (smectite, palygorskite/sepiolite, kaolinite, illite, chlorite, mixed layered chlorite-vermiculite (C-V) and illite-vermiculite (I-V). The average major and trace elements found in the phosphorite include P2O5 (35.41 wt.%), REEs (44.57 ppm), Y (52.85 ppm), and U (5.45 ppm). The Mazıdağı phosphorite analysis indicates that the conditions are slightly oxic, which is supported by their slightly negative Ceanom average values (–0.30), low Ce/La ratios (0.32), and a V/(V + Ni) mean of 0.93 ppm. All the recoded values of the average REE for the study area are considerably lower than those in Iraq (84.30 ppm), Tunisia (400.3 ppm), Morocco (571.75 ppm) and Jordan (187 ppm). It is inferred that mineral formation processes are affected by the biogenic and biogeochemical activities that occurred in conjunction with the changes in sea level driven by the tectonic conditions associated with the evolution of the Neotethys Ocean.
METADATA IN OTHER LANGUAGES:
Polish
Mineralogia i geochemia górnokredowych złóż fosforytów Mazıdağı z płyty północno-arabskiej (Mardin, Turcja)
anomalie ceru, formacja Karababa, fosforyty, pierwiastki ziem rzadkich (REE)
W regionie Mardin-Mazıdağı, który odpowiada północnej płycie arabskiej, w formacji Karababa (górna kreda) znajdują się warstwy zawierające morskie skały fosforytowe. Jednostka Karataş zawiera fosforyty i skały węglanowe ze sferoidalnymi geodami czertów (konkrekcji) i skamieniałościami. Wapienie fosforytowe i mikrytyczne zawierają skamieniałe fragmenty bezkręgowców i materiały takie jak: optycznie izotropowe granulowane minerały apatytowe, kanciaste/nieco kanciaste i blaszkowate fragmenty kości ryb oraz muszle ramienionogów. Wyniki SEM (skaningowej mikroskopii elektronowej) pokazują, że minerały apatytu mają kształt kulisty lub elipsoidalny, a ich wielkość waha się między 100–200 μm. Według badań dyfrakcji rentgenowskiej (XRD) skały zawierają apatyt (fluoroapatyt bogaty w węglany; CFA), węglan (kalcyt, dolomit), krzemionkę (kwarc i opal-CT), niewiele skalenia i glinę (smektyt, palygorskit/sepiolit), kaolinit, illit, chloryt, mieszany warstwowy chloryt-wermikulit (C-V) i illit-wermikulit (I-V). Główne i śladowe pierwiastki występujące w fosforynie zawierają średnio P2O5 (35,41% wag.), REE (44,57 ppm), Y (52,85 ppm) i U (5,45 ppm). Analiza fosforytów Mazıdağı wskazuje, że warunki są lekko tlenowe, co potwierdzają ich nieco ujemne średnie wartości Ceanom (–0,30), niski stosunek Ce/La (0,32) i średnia V/(V + Ni) wynosząca 0,93 ppm. Wszystkie zarejestrowane wartości średnie REE dla badanego obszaru są znacznie niższe niż w Iraku (84,30 ppm), Tunezji (400,3 ppm), Maroku (571,75 ppm) i Jordanii (187 ppm). Wywnioskowano, że na procesy formowania się minerałów mają wpływ działania biogenne i biogeochemiczne, które wystąpiły w połączeniu ze zmianami poziomu morza spowodowanymi warunkami tektonicznymi związanymi z ewolucją Oceanu Neotetydy.
 
REFERENCES (123)
1.
Aba-Hussain et al. 2009 – Aba-Hussain, A.A., Al-Bassam, K.S. and Al-Rawi, Y.T. 2009. Rare earth elements geochemistry of some Paleocene carbonate fluorapatites from Iraq. Iraqi Bulletin of Geology and Mining 6(1), pp. 81–94.
 
2.
Abed, A.M. 2013. The eastern Mediterranean phosphorite giants: an interplay between tectonics and upwelling. GeoArabia 18, pp. 67–94, DOI: 10.2113/geoarabia180267.
 
3.
Abed et al. 2016 – Abed, A.M., Jaber, O., Alkuisi, M. and Sadaqah, R. 2016. Rare earth elements and uranium geochemistry in the Al-Kora phosphorite province, Late Cretaceous, northwestern Jordan. Arabian Journal of Geosciences 9, DOI: 10.1007/s12517-015-2135-6.
 
4.
Abou El-Anwar et al. 2016 – Abou El-Anwar E.A, Mekky, H.S., Abd El Rahim, SH. and El-Sankary, M.M. 2016. Mineralogical and petrographical study of the Duwi Formation Phosphorite. Bulletin of the National Research Centre 41(1), pp. 359–370.
 
5.
Abou El-Anwar et al. 2017 – Abou El-Anwar, A.A., Mekky, H.S., Abd El Rahim, S.H. and Aita, S.K. 2017. Mineralogical, geochemical characteristics and origin of Late Cretaceous phosphorite in Duwi Formation (Geble Duwi Mine), Red Sea region, Egypt. Egyptian Journal of Petroleum 26(1), pp. 157–169, DOI: 10.1016/j.ejpe.2016.01.004.
 
6.
Acmelab 2023. [Online] http://www.acmelab.com/ [Accessed: 2023-05-04].
 
7.
Al-Bassam et al. 2010 – Al-Bassam, K.S., Aba-Hussain, A.A., Mohammed, A.Q. and Al-Rawi, Y.T. 2010. Petrographic Classification of Phosphate Components of East Mediterranian Phosphorite Deposits. Iraqi Bulletin of Geology and Mining 6(1), pp. 59–79.
 
8.
Al-Hobaib et al. 2013 – Al-Hobaib, A.S., Baioumy, H.M. and Al-Ateeq, M.A. 2013. Geochemistry and origin of the Paleocene phosphorites from the Hazm Al-Jalamid area, northern Saudi Arabia. Journal of Geochemical Exploration 132, pp. 15–25, DOI: 10.1016/j.gexplo.2013.04.001.
 
9.
Almogi‐Labin et al. 1993 – Almogi‐Labin, A., Bein, A. and Sass, E. 1993. Late Cretaceous upwelling system along the southern Tethys margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography 8(5), pp. 671–690, DOI: 10.1029/93PA02197.
 
10.
Altschuler, Z.S. 1980. The geochemistry of trace elements in marine phosphorites. Part I. Characteristic abundances and enrichment, In Bentor, Y.K. (ed.), Marine Phosphorites. SEPM Special Publication 29, pp. 19–30, DOI: 10.2110/pec.80.29.0019.
 
11.
Altschuler et al. 1967 – Altschuler, Z.S., Berman, S. and Cuttita, F. 1967. Rare earths in phosphorites geochemistry and potential recovery. U.S. Geol. Suro., Prot. Pap. (United States), 575-B: B1.
 
12.
Alvarez et al. 1980 – Alvarez, L.W., Alvarez, W. and Asaro, F. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448), pp. 1095–1110, DOI: 10.1126/science.208.4448.1095.
 
13.
Ames, L.L. 1959. The genesis of carbonate apatites. Economic Geology 54(5), pp. 829–841, DOI: 10.2113/gsecongeo.54.5.829.
 
14.
Amine et al. 2009 – Amine, M., Asafar, F., Bilali, L. and Nadifiyine, M. 2019. Hydrochloric acid leaching study of rare earth elements from Moroccan phosphate. Journal of Chemistry 2019, DOI: 10.1155/2019/4675276.
 
15.
Arning et al. 2009 – Arning, E.T., Birgel, D., Brunner, B. and Peckmann, J. 2009. Bacterial formation of phosphatic laminites off Peru. Geobiology 7, pp. 295–307, DOI: 10.1111/j.1472-4669.2009.00197.x.
 
16.
Arthur, M.A. and Jenkyns, H.C. 1981. Phosphorites and paleooceanography. Oceanologica Acta special issue, pp. 83–96.
 
17.
Baioumy et al. 2007 – Baioumy, H.M., Tada, R. and Gharaie, M.H.M. 2007. Geochemistry of Late Cretaceous phosphorites in Egypt: implication for their genesis and diagenesis. Journal of African Earth Sciences 49(1–2), pp. 12–28, DOI: 10.1016/j.jafrearsci.2007.05.003.
 
18.
Banerjee et al. 2020 – Banerjee, S., Choudhury, T.R., Saraswati, P.K. and Khanolkar, S. 2020. The formation of authigenic deposits during Paleogene warm climatic intervals: a review. Journal of Palaeogeography 9(1), pp. 1–27, DOI: 10.1186/s42501-020-00076-8.
 
19.
Bardet et al. 2000 – Bardet, N., Cappetta, H., Pereda Suberbiola, X., Mouty, M., Al Maleh, A.K., Ahmad, A.M., Khrata, O. and Gannoum, N. 2000. The marine vertebrate faunas from the Late Cretaceous phosphates of Syria. Geological Magazine 137(3), pp. 269–290, DOI: 10.1017/S0016756800003988.
 
20.
Batarseh, M. and El-Hasan, T. 2009. Toxic Element Levels in the Phosphate Deposits of Central Jordan. Environmental Earth Sciences 2(2), pp. 81–88, DOI: 10.1080/15320380802660214.
 
21.
Bau et al. 2010 – Bau, M., Balan, S., Schmidt, K. and Koschinsky, A. 2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth and Planetary Science Letters 299(3–4), pp. 310–316, DOI: 10.1016/j.epsl.2010.09.011.
 
22.
Beer, H. 1966. Geology of phosphate layers around Mardin-Derik-Mazidağı (Mardin-Derik-Mazıdağı çevresindeki fosfatlı tabakaların jeolojisi). Maden Tetkik ve Arama Enstitüsü Dergisi 66(66), pp. 104–120 (in Turkish).
 
23.
Belayouni, H. and Beja-Sassi, A. 1987. Excursion guidebook. 10th International Field Workshop and Symposium: Genesis of the Tethyan phosphorites and associated petroleum source rocks, Tunisia. International Geoscience Program 156, Phosphorites, 131 p.
 
24.
Benni, T. 2013. Phosphate Deposits of Iraq. In UNFC Workshop, Santiago de Chile.
 
25.
Berker, E. 1972. Türkiye Phosphate Deposits (Türkiye Fosfat Yatakları). Bilimsel Madencilik Dergisi 11(4), pp. 77–82 (in Turkish).
 
26.
Berker, E. 1989. The Mardin-Mazidagi-Derik phosphate deposits, south-eastern Turkey. [In:] Phosphate deposits of the world. Phosphate rock resources pp. 380–386.
 
27.
Bezzi et al. 2012 – Bezzi, N., Aifa, T., Hamoudi, S. and Merabet, D. 2012. Trace elements of Kef Es Sennoun natural Phosphate (Djebel Onk, Algeria) and how they affect the various Mineralurgic modes of treatment. Procedia Engineering 42, pp. 1915–1927, DOI: 10.1016/j.proeng.2012.07.588.
 
28.
Boggs, S. 2009. Petrology of Sedimentary Rocks. 2nd Edition, Cambridge University Press, New York, 600 pp.
 
29.
Bowles et al. 1971 – Bowles, F.A., Angino, E.A., Hosterman, J.W. and Galle, O.K. 1971. Precipitation of deep-sea palygorskite and sepiolite. Earth and Planetary Science Letters 11(1–5), pp. 324–332.
 
30.
Brindley, G.W. 1980. Quantitative X-Ray Mineral Analysis of Clays. [In:] Brindley, G.W. and Brown, G., eds. Crystal Structures of Clay Minerals and Their X-Ray Identification (pp. 411–438). Mineralogical Society, London.
 
31.
Brindley, G.W. and Brown, G. 1980. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph, No. 5. Mineralogical Society London 495 pp.
 
32.
Brock, J. and Schulz-Vogt, H.N. 2011. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME Journal 5, pp. 497–506, DOI: 10.1038/ismej.2010.135.
 
33.
Brown, G. 1961. The X-Ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society of London (Clay Minerals Group) 543 pp.
 
34.
Caillère, S. and Hénin, S. 1963. Minéralogie des Argiles. Soil Science 98(3), 208 pp.
 
35.
Canadian Food Inspection Agency 1997. Plant Production: fertilizers section.
 
36.
Cater, J.M.L. and Gillcrist, J.R. 1994. Karstic reservoirs of the mid-Cretaceous Mardin Group, SE Turkey: tectonic and eustatic controls on their genesis, distribution and preservation. Journal of Petroleum Geology 17(3), pp. 253–278, DOI: 10.1111/j.1747-5457.1994.tb00134.x.
 
37.
Chahi et al. 1993 – Chahi, A., Duplay, J. and Lucas, J. 1993. Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation. Clays and Clay Minerals 41(4), pp. 401–411, DOI: 10.1346/CCMN.1993.0410401.
 
38.
Choquette, P.W. and James, N.P. 1990. Lime stones the burial diagenetic environment, In McIlreath, I.A., and Morrow, D.W. eds. Diagenesis, Ottowa, Ontaria, Canada, Geological Association of Canada pp. 75–111.
 
39.
Church, T.M. and Velde, B. 1979. Geochemistry and origin of a deep-sea Pacific palygorskite deposit. Chemical Geology 25(1–2), pp. 31–39, DOI: 10.1016/0009-2541(79)90081-0.
 
40.
Condie, K.C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geolog 104(1–4), pp. 1–37, DOI: 10.1016/0009-2541(93)90140-E.
 
41.
Cook, P.J. 1972. Petrology and geochemistry of the phosphate deposits of North West Queensland, Australia. Economic Geology 67, pp. 1193–1213, DOI: 10.2113/gsecongeo.67.8.1193.
 
42.
Cook, P.J. and Cook, J.R. 1985. Marine biological change and phosphogenesis around the Cretaceous-Tertiary boundary. Sciences Géologiques, bulletins et mémoires 77(1), pp. 105–108.
 
43.
Cook, P.J. and McElhinny, M.W. 1979. A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonic. Economic Geology 74(2), pp. 315–330, DOI: 10.2113/gsecongeo.74.2.315.
 
44.
Couture, R.A. 1977. Composition and origin of palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean. Chemical Geology 19, pp. 113–130, DOI: 10.1016/0009-2541(77)90009-2.
 
45.
Crosby, C.H.  and Bailey, J.V. 2012. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Frontiers in Microbiology 3, DOI: 10.3389/fmicb.2012.00241.
 
46.
Çoban, H. 1987. Derik Mazıdağı (Mardin) Fosfat yataklarının Sedimantolojisi (Yayımlanmamış Yüksek Lisans Tezi), Ankara Üniversitesi Fen Bilimleri Enstitüsü (in Turkish).
 
47.
Daneshian et al. 2015 – Daneshian, J., Shariati, S. and Salsani, A. 2015. Biostratigraphy and planktonic foraminiferal abundance in the phosphate bearing Pabdeh Formation of the lar mountains (SW Iran). Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen 278(2), pp. 175–189, DOI: 10.1127/njgpa/2015/0522.
 
48.
De Baar et al. 1985 – De Baar, H.J.W., Bacon, M.P., Brewer, P.G. and Bruland, K.W. 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta 49(9), pp. 1943–1959, DOI: 10.1016/0016-7037(85)90089-4.
 
49.
Douville et al. 1999 – Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P. and Gamo, T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta 63(5), pp. 627–643, DOI: 10.1016/S0016-7037(99)00024-1.
 
50.
Dunoyer De Segonzac, G. 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15(3–4), pp. 281–346, DOI: 10.1111/j.1365-3091.1970.tb02190.x.
 
51.
El Bamiki et al. 2021 – El Bamiki, R., Raj, O., Ouabid, M., Elghali, A., Yazami, O. K. and Bodinier, J.-L. 2021. Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals 11(10), DOI: 10.3390/min11101137.
 
52.
Estéoule-Choux, J. 1984. Palygorskite in the Tertiary deposits of the Armorican Massif. [In:] Palygorskite-Sepiılite: Occurrences, Genesis and Uses. Singer, A. and Galan E. Eds., In Developments in Sedimentology Amsterdam Elsevier, 37, pp. 75–85.
 
53.
European Commission (EC) 1986. Council Directive (86/278/EEC) on the protection of the environment, and in particular of soil, when sewage sludge is used in agriculture. Official Journal of European Community L181 (Annex 1A), pp. 6–12.
 
54.
Folk, R.L. 1962. Spectral subdivision of limestone types. American Association of Petroleum Geologist Bulletin 1, pp. 62–84.
 
55.
Föllmi, K.B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews 40(1–2), pp. 55–124, DOI: 10.1016/0012-8252(95)00049-6.
 
56.
Gallala et al. 2016 – Gallala, W., Saïdi, M., El Hajii, S., Zayani, K., Gaied, M.E. and Montacer, M. 2016. Characterization and valorization of Tozeur-Nefta phosphate ore deposit (Southwestern Tunisia). Procedia Engineering 138, pp. 8–18, DOI: 10.1016/j.proeng.2016.02.047.
 
57.
Gallego-Torres et al. 2010 – Gallego-Torres, D., Martinez-Ruiz, F.C., De Lange, G. J., Jiménez-Espejo, F.J. and Ortega-Huertas, M. 2010. Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeography, Palaeoclimatology, Palaeoecology 293(1–2), pp. 76–89, DOI: 10.1016/j.palaeo.2010.05.001.
 
58.
Ghasemian et al. 2022 – Ghasemian, S., Öztürk, H. and Cansu, Z. 2022. Geochemistry of red and cream phosphorites from the Şemikan phosphorite deposit, SE Turkey: Implication for phosphorite deposition conditions in the Upper Cretaceous. Journal of African Earth Sciences 185, pp. 104–398, DOI: 10.1016/j.jafrearsci.2021.104398.
 
59.
Goldhammer et al. 2010 – Goldhammer, T., Bruchert, V., Ferdelman, T.G. and Zabel, M. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geoscience 3(8) pp. 557–561, DOI: 10.1038/ngeo913.
 
60.
Göncüoğlu, M.C. and Turhan, N. 1984. Geology of the Bitlis Metamorphic Belt. Conference Geology of the Taurus Belt, Ankara, 1, pp. 237–244 (in Turkish).
 
61.
Göncüoğlu et al. 1997 – Göncüoğlu, M.C., Dirik, K. and Kozlu, H. 1997. General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Géologiques Des Pays Helléniques 37, pp. 515–536.
 
62.
Gromet et al. 1984 – Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. 1984. The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48(12), pp. 2469–2482, DOI: 10.1016/0016-7037(84)90298-9.
 
63.
Handfield et al. 1959 – Handfield, R.W., Bryant, G.F. and Keskin, C. 1959. Measured section, Korudağ (American Overseas Petroleum). TPAO Search Group Report No: 523 (in Turkish).
 
64.
Hatch, J.R. and Leventhal, J.S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology 99(1–3), pp. 65–82, DOI: 10.1016/0009-2541(92)90031-Y.
 
65.
Hoffman, J. and Hower, J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA. [In:] Aspects of Diagenesis, Scholle, P.A. and Schluger P.R. Eds., The Society of Economic Paleontologists and Mineralogists, Special Publication 26, pp. 55–79.
 
66.
Hogdahl et al. 1968 – Hogdahl, O. T., Welsom, S. and Bowen, V. T. 1968. Neutron activation analysis of lanthanide elements in sea water. Advances in Chemistry 73, pp. 308–325.
 
67.
İmamoğlu et al. 2009 – İmamoğlu, Ş., Nathan, Y., Çoban, H., Soudry, D., and Glenn, C. 2009. Geochemical, mineralogical and isotopic signatures of the Semikan. West Kasrık Turkish phosphorites from the Derik–Mazıdağı–Mardin area, SE Anatolia. International Journal Earth Science 98, pp. 1679–1690, DOI: 10.1007/s00531-008-0332-1.
 
68.
Isphording, W.C. 1984. The clays of Yucatan, Mexico; a contrast in genesis: Singer, A. and Galan, E. eds., Palygorskite-Sepiolite Occurrences, Genesis and Uses. Developments in Sedimentology 37, pp. 59–73.
 
69.
Jarvis, I. 1992. Sedimentology, geochemistry and origin of phosphatic chalk: The Upper Cretaceous of NW Europe. Sedimentology 39, pp. 55–97, DOI: 10.1111/j.1365-3091.1992.tb01023.x.
 
70.
Jarvis et al. 1994 – Jarvis, I., Burnett, W.C., Nathan, Y., Almbaydin, F.S.M., Attia, A.K.M., Castro, L.N. and Zanin, Y.N. 1994. Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae 87(3), pp. 643–700.
 
71.
J.C.P.D.S. 1990. Powder Diffraction File. Alphabetical Indexes Inorganic Phases. Swarthamore, U.S.A.
 
72.
Jones, B. and Manning, D.A. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical geology 111(1–4), pp. 111–129, DOI: 10.1016/0009-2541(94)90085-X.
 
73.
Kechiched et al. 2020 – Kechiched, R., Laouar, R., Bruguier, O., Kocsis, L., Salmi-Laouar, S. 2020. Comprehensive REE+ Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. Journal of Geochemical Exploration 208, pp. 106–396, DOI: 10.1016/j.gexplo.2019.106396.
 
74.
Kemp, R.A. and Trueman, C.N. 2003. Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sedimentary Geology 155(1–2), pp. 109–127, DOI: 10.1016/S0037-0738(02)00163-X.
 
75.
Khan et al. 2012a – Khan, K.F., Shamim Dar, A., Saif, T. and Khan, A. 2012a. Geochemistry of phosphate bearing sedimentary rocks in parts of Sonrai block, Lalitpur District, Uttar Pradesh, India. Chemie der Erde 72(2), pp. 117–115, DOI: 10.1016/j.chemer.2012.01.003.
 
76.
Khan et al. 2012b – Khan, K.F., Shamim Dar, A., Saif, T. and Khan A. 2012b. Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India. Journal of Rare Earths 30(5), pp. 507–514, DOI: 10.1016/S1002-0721(12)60081-7.
 
77.
Krumbein, W.C. and Garrels, R.M. 1952. Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. The Journal of Geology 60(1), pp. 1–33.
 
78.
Lan et al. 2019 – Lan, C.Y., Yang, A.Y., Wang, C.L. and Zhao, T.P. 2019. Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the southern margin of the North China Craton: implications on Neoarchean seawater compositions and solute sources. Precambrian Research 326, pp. 240–257, DOI: 10.1016/j.precamres.2017.10.024.
 
79.
Lauriente, D.H. 1996. Phosphate industry overview. [In:] Chemical Economics Handbook; SRI International: Zurich, Switzerland, 94 pp.
 
80.
Lécuyer et al. 2004 – Lécuyer, C., Reynard, B. and Grandjean, P. 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology 204(1–2), pp. 63–102, DOI: 10.1016/j.chemgeo.2003.11.003.
 
81.
Lucas, J. and Prévôt-Lucas, L. 1996. Tethyan Phosphates and Bioproductites. [In:] Nairn, A.E., Ricou, L.-E., Vrielynck, B. and Dercourt, J. eds., The Tethys Ocean, Springer, Boston, MA, pp. 367–391.
 
82.
Majumdar et al. 2003 – Majumdar, A., Tanaka, K., Takahashi, T. and Kawabe, I. 2003. Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India. Geochemical Journal 37(2), pp. 277–289, DOI: 10.2343/geochemj.37.277.
 
83.
Mand et al. 2018 – Mand, K., Kirsimae, K., Lepland, A., Crosby, C.H., Bailey, J. V., Konhauser, K.O., Wirth, R., Schreiber, A. and Lumiste, K. 2018. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth. Geobiology 16(6), pp. 640–658, DOI: 10.1111/gbi.12309.
 
84.
McArthur, J.M. and Walsh, J.N. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology 47(3–4), pp. 191–220, DOI: 10.1016/0009-2541(84)90126-8.
 
85.
Meissner, C.R. and Ankary, A. 1970. Geology of phosphate deposits in the Sirhan-Turayf Basin, Kingdom of Saudi Arabia. United States Department of the Interior U.S. Geological Survey Special report, DOI: 10.3133/20095.
 
86.
Michard et al. 1983 – Michard, A., Albarede, F., Michard, G., Minster, J.F. and Charlou, J.L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). Nature 303(5920), pp. 795–797.
 
87.
Millot, G. 1970. Geology of Clays: weathering, sedimentology, geochemistry. Springer Science & Business Media, 429 pp.
 
88.
Moore, D.M. and Reynolds, R.C. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press 332 pp.
 
89.
Morford, J.L. and Emerson, S. 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta 63, pp. 1735–1750, DOI: 10.1016/S0016-7037(99)00126-X.
 
90.
Nathan, Y. and Sass, E. 1981. Stability relations of apatites and calcium carbonates. Chemical Geology 34(1–2), pp. 103–111.
 
91.
Nathan, Y. and Soudry, D. 2018. Authigenic silicate minerals in phosphorites of the Negev, Southern Israel. Clay Minerals 17(2), pp. 249–254, DOI: 10.1180/claymin.1982.017.2.10.
 
92.
Okay, A. I. 2008. Geology of Turkey: a synopsis. Anschnitt 21, pp. 19–42.
 
93.
Orris, G. and Chernoff, C.B. 2004. Review of world sedimentary phosphate deposits and occurrences. Chapter 20. [In:] Hein, J.R., eds. Life cycle of the Phosphoria Formation, Handbook of Exploration and Environmental Geochemistry. Elsevier Science B.V.
 
94.
Owen, R.M. and Olivarez, A.M. 1988. Geochemistry of rare earth elements in Pacific hydrothermal sediments. Marine Chemistry 25(2), pp. 183–196, DOI: 10.1016/0304-4203(88)90063-1.
 
95.
Panczer et al. 1989 – Panczer, G., Nathan, Y. and Shiloni, Y. 1989. Trace element characterization of phosphate nodules in Israel. Caractérisation en éléments traces de nodules de phosphate d’Israël. Sciences Géologiques, Bulletins et Mémoires 42(3), pp. 173–184.
 
96.
Perinçek, D. 1980. Sedimentation on the Arabian Shelf under the Control of Tectonic Activity in Taurid Belt. 5th Petroleum Congress of Turkey-Ankara, pp. 77–93 (in Turkish).
 
97.
Picard et al. 2002 – Picard, S., Lécuyer, C., Barrat, J.A., Garcia, J.P., Dromart, G. and Sheppard, S.M. 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chemical Geology 186(1), pp. 1–16, DOI: 10.1016/S0009-2541(01)00424-7.
 
98.
Piper, D.Z. 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38/7, pp. 1007–1022, DOI: 10.1016/0016-7037(74)90002-7.
 
99.
Piper, D.Z. 1999. Trace elements and major-element oxides in the Phosphoria Formation at Enoch Valley, Idaho; Permian sources and current reactivities (No. 99–163). US Geological Survey.
 
100.
Powell, J. 1989. Stratigraphy and sedimentation of the Phanerozoic rocks in central and southern Jordan, part B: Kurnub, Ajlun and Belqa Group. Bulletin 11, Natural Resources Authority Jordan, 130 pp.
 
101.
Salsani et al. 2020 – Salsani, A., Amini, A., Shariati, S., Aghanabati, S. A. and Aleali, M. 2020. Geochemistry, facies characteristics and palaeoenvironmental conditions of the storm-dominated phosphate-bearing deposits of eastern Tethyan Ocean; A case study from Zagros region, SW Iran. AIMS Geosciences 6(3), pp. 316–354, DOI: 10.3934/geosci.2020019.
 
102.
Shields, G. and Stille, P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology 175(1–2), pp. 29–48.
 
103.
Singer, A. 1979. Palygorskite in sediments: detrital, diagenetic or neoformed. A critical review. Geologische Rundschau 68, pp. 996–1008, DOI: 10.1007/BF01820193.
 
104.
Singer, A. 1984. Pedogenic palygorskite in the arid environment.in Palygorskite Sepiolite. Occurrences, Genesis and Uses, Singer, A. and Galan E., eds. Developments in Sedimentology, 37, Elsevier, pp. 169–176.
 
105.
Singer et al. 1984 – Singer, A. and Galan, E. 1984. Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Amsterdam, Elsevier, Developments in Sedimentology 37, 352 pp.
 
106.
Slansky et al. 1959 – Slansky, M., Camez, T. and Millot, G. 1959. Sedimentation argileuse et phosphatee au Dahomey. Bulletin de la Société Géologique de France 7(2), pp. 150–155.
 
107.
Soudry et al. 2002 – Soudry, D., Ehrlich, S., Yoffe, O. and Nathan, Y. 2002. Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern Israel). Chemical Geology 189(3–4), pp. 213–230, DOI: 10.1016/S0009-2541(02)00144-4.
 
108.
Soudry et al. 2006 – Soudry, D., Glenn, C.R., Nathan, Y., Segal, I. and Vonder Haar, D.L. 2006. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Science Reviews 78(1–2), pp. 27–57, DOI: 10.1016/j.earscirev.2006.03.005.
 
109.
Srodon, J. 1999. Use of clay minerals in reconstructing geological processes: Recent advances and some perspectives. Clay Minerals 34(1), pp. 27–37, DOI: 10.1180/000985599546046.
 
110.
Suttouf, M. 2007. Identifying the origin of rock phosphates and phosphorus fertilisers using isotope ratio techniques and heavy metal patterns. Von der Fakultat fur Lebenswissenschaften der Technischen Universitat Carolo-Wilhelmina, Doktors der Naturwis-senschaften, 196 pp.
 
111.
Svoboda, K. 1989. The lower Tertiary phosphate deposits of Tunisia. [In:] Notholt, A.J.G., Sheldon R.P. and Davidson, D.F., eds. Phosphate Deposits of the World, Volume 2, Phosphate Rock Resources. Cambridge University Press, pp. 284–288.
 
112.
Tlili et al. 2010 – Tlili, A., Felhi, M. and Montacer, M. 2010. Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, Southwestern Tunisia. Clays and Clay Minerals 58(4), pp. 573–584, DOI: 10.1346/CCMN.2010.0580411.
 
113.
Torres-Ruiz et al. 1994 – Torres-Ruiz, J., Lopez-Galindo, A., Gonzalez, L. and Delgado Huertas, A. 1994. Geochemistry of Spanish sepiolite/palygorskite deposits: Genetic consideration; based on trace elements and isotopes. Chemical Geology 112, pp. 221–245, DOI: 10.1016/0009-2541(94)90026-4.
 
114.
Turekian, K.K. and Wedelpohl, K.H. 1961. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin 2, pp. 175–192, DOI: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
 
115.
Umut, M. 2011. 1/100.000 ölçekli Türkiye Jeoloji Haritası, Diyarbakır N 44 paftası. Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara (in Turkish).
 
116.
Varol, B. 1989. Mazıdağ-Derik (Mardin) fosfat pelloidlerinin sedimanter petrografisi ve kökeni. Maden Tetkik ve Arama Dergisi 109, pp. 119–126 (in Turkish).
 
117.
Weaver, C.E. 1984. Origin and geologic applications of the palygorskite deposits of the S. E. United States. [In:] Singer, A. and Galan, E., eds. Palygorskite-Sepiolite: Occurrences, Genesis and Uses, Developments in Sedimentology Amsterdam, Elsevier 37, pp. 39–58.
 
118.
Wright et al. 1987 – Wright, J., Schrader, H. and Holserab, W.T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta 51(3), pp. 631–644, DOI: 10.1016/0016-7037(87)90075-5.
 
119.
Yalçın, H. and Bozkaya, Ö. 1995. Sepiolite-palygorskite from the Hekimhan region (Turkey) − Clays and Clay Minerals 43, pp. 705–717, DOI: 10.1346/CCMN.1995.0430607.
 
120.
Yılmaz et al. 2018 – Yılmaz, I.O., Cook, T.D., Hoşgör, I., Wagreich, M., Rebman, K. and Murray, A.M. 2018. The upper Coniacian to upper Santonian drowned Arabian carbonate platform, the Mardin–Mazıdağı area, SE Turkey: sedimentological, stratigraphic, and ichthyofaunal records. Cretaceous Research 84, pp. 153–167, DOI: 10.1016/j.cretres.2017.09.012.
 
121.
Yılmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogeny. Geological Society of American Bulletin 105, pp. 251–271, DOI: 10.1130/0016-7606(1993)105<0251:NEAMOT>2.3.CO;2.
 
122.
Yılmaz, Y. 2019. Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences 56, pp. 1163–1180, DOI: 10.1139/cjes-2018-0170.
 
123.
Zarasvandi et al. 2021 – Zarasvandi, A., Fereydouni, Z., Alizadeh, B., Absar, N., Shukla, A.D., Raza, M.Q., Ashok, M. and Zentilli, M. 2021. Phosphogenesis in the Zagros fold-thrust belt, Iran: The link between the Tethyan paleoenvironment and phosphate ore deposition. Ore Geology Reviews 139, DOI: 10.1016/j.oregeorev.2021.104563.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top