Innovative technologies for the recovery of platinum group metals from catalysts – a case study of selected projects
More details
Hide details
Mineral and Energy Economy Research Institute Polish Academy of Sciences, Kraków, Poland
Unimetal Recycling sp. z o.o., Trzebinia, Poland
MONOLITHOS Catalysts and Recycling Ltd, Athens, Greece
Submission date: 2022-11-15
Final revision date: 2023-01-25
Acceptance date: 2023-04-04
Publication date: 2023-06-12
Corresponding author
Natalia Generowicz   

Mineral and Energy Economy Research Institute Polish Academy of Sciences, Kraków, Poland
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(2):71-86
The growing increase in the use of cars and transportation in general is causing an increase the emission of pollutants into the atmosphere. The current European Union regulations impose the minimization of pollution through the use of automotive catalytic converters on all member countries, which stops toxic compounds from being emitted into the atmosphere thanks to their contents of platinum group metals (PGMs). However, the growing demand for cars and the simultaneous demand for catalytic converters is contributing to the depletion of the primary sources of PGMs. This is why there is now increasing interest in recycling PGMs from catalytic converters through constantly developing technologies. There are newer and more sustainable solutions for the recovery of PGMs from catalytic converters, making the process part of a circular economy (CE) model. The purpose of this article is to present two innovative methods of PGM recovery in the framework of ongoing research and development projects.
The article was written as part of the ongoing project “Development of an innovative fully automated and mobile catalyst recycling technology” performed in accordance with the grant agreement no. POIR.01.01.01-00-0648/19-00 concluded under Sub-Action 1.1.1: Industrial research and development work conducted by enterprises under the Operational Programme Intelligent Development 2014–2020 and the PHEIDIAS project: An Innovative Hydrometallurgical Recycling System for PGMs Recovery, number 20220, funded by EIT Raw Materials.
Innowacyjne technologie odzysku metali grupy platynowców z katalizatorów – studium przypadku wybranych projektów
odzysk PGMs, recykling, katalizatory, innowacyjne technologie, gospodarka o obiegu zamkniętym
Rosnący wzrost wykorzystania samochodów i generalnie środków transportu przyczynia się do emisji zanieczyszczeń do atmosfery. Obecne przepisy UE narzucają na wszystkie kraje członkowskie minimalizacje zanieczyszczeń poprzez stosowanie katalizatorów samochodowych, które dzięki zawartości metali z grupy platynowców (PGM) zatrzymują toksyczne związki przed emisji do atmosfery. Jednak rosnący popyt na samochody i jednoczesny popyt na katalizatory przyczynia się do zubożania pierwotnych źródeł pozyskiwania PGM. Dlatego też obecnie coraz więcej mówi się o recyklingu PGM z katalizatorów poprzez ciągle rozwijające się technologie. Powstają coraz nowsze, bardziej zrównoważone rozwiązania odzysku PGM z katalizatorów, dzięki czemu proces ten wpisuje się w model gospodarki o obiegu zamkniętym (CE). Celem artykułu jest przedstawienie dwóch innowacyjnych metod odzysku PGM w ramach prowadzonych obecnie projektów badawczo-rozwojowych.
Balcerzak, M. and Kaczmarczyk, M. 2001. Rapid derivative spectrophotometric method for the determination of platinum in Pt-Ru/C catalyst using iodide media. Analytical Sciences 17, pp. 1321–1324, DOI: 10.2116/analsci.17.1321.
Belcastro, E.L. 2012. Life Cycle Analysis of a Ceramic Three-Way Catalytic Converter. The Virginia Polytechnic Institute and State University.
Bojanowska, M. 2005. Influence of anthropogenic platinum on environment (Wpływ antropogenicznej platyny na elementy środowiska). Acta Agrophysica 5, pp. 535–541 (in Polish).
de Oliveira Demarco et al. 2020 – de Oliveira Demarco, J., Stefanello Cadore, J., Marcelo Veit, H., Bremm Madalosso, H., Hiromitsu Tanabe, E. and Assumpção Bertuol, D. 2020. Leaching of platinum group metals from spent automotive catalysts using organic acids. Minerals Engineering 159, DOI: 10.1016/j.mineng.2020.106634.
Directive 2000/53/EC. [Online:] https://eur-lex.europa.eu/lega... [Accessed: 2023-01-24].
Engineering Learn 2022. [Online:] https://engineeringlearn.com/w... [Accessed: 2023-01-24].
Espinoza et al. 2020 – Espinoza, L.T., Schrijvers, D., Chen, W.-Q., Dewulf, J., Eggert, R., Goddin, J., Habib, K., Hagelüken, C., Hurd, A.J., Kleijn, R., Ku, A.Y., Lee, M.-H., Nansai, K., Nuss, P., Peck, D., Petavratzi, E., Sonnemann, G., van der Voet, E., Wäger, P.A., Young, S.B. and Hool, A. 2020. Greater circularity leads to lower criticality, and other links between criticality and the circular economy. Resources, Conservation and Recycling 159, DOI: 10.1016/j.resconrec.2020.104718.
Fornalczyk, A. 2016. Analysis of the possibility of using magnetohydrodynamics for intensification of platinum recovery from spent automotive catalyst (Analiza możliwości wykorzystania magnetohydrodynamiki do intensyfikacji odzysku platyny ze zużytych katalizatorów samochodowych). Gliwice: Wyd. Politechniki Śląskiej (in Polish).
Generowicz et al. 2021 – Generowicz, N., Kulczycka, J., Partyka, M. and Saługa, K. 2021. Key Challenges and Opportunities for an Effective Supply Chain System in the Catalyst Recycling Market–A Case Study of Poland. MDPI Resources 10(2), DOI: 10.3390/resources10020013.
Helmers, E. 1997. Platinum emission rate of automobiles with catalytic converters. Environmental Science and Pollution Research 4, pp. 99–103, doi: 10.1007/BF02986288.
Knobloch et al. 2018 – Knobloch, V., Zimmermann, T. and Gößling-Reisemann, S. 2018. From criticality to vulnerability of resource supply: The case of the automobile industry. Resources, Conservation and Recycling 138, pp. 272–282, DOI: 10.1016/j.resconrec.2018.05.027.
Kolodziej et al. 2007 – Kolodziej, M., Baranowska, I. and Matyja, A. 2007. Determination of Platinum in Plant Samples by Voltametric Analysis. Electroanalysis 19(15), pp. 1585–1589, DOI: 10.1002/elan.200703876.
Krähenbühl et al. 2006 – Krähenbühl, U., Fragnière Rime, C. and Haldimann, M. 2006. An Environmental Case History of Platinum. CHIMIA International Journal for Chemistry 60(6), p. 337, DOI: 10.2533/000942906777836336.
Limbeck et al. 2007 – Limbeck, A., Puls, C. and Handler, M. 2007. Platinum and palladium emissions from on-road vehicles in the kaisermuhlen tunnel (Vienna, Austria). Environmental Science & Technology 41, pp. 4938–4945, DOI: 10.1021/es062675t.
Lough et al. 2005 – Lough, G.C., Schauer, J.J., Park, J.-S., Shafer, M.M., DeMinter, J.T. and Weinstein, J.P. 2005. Emissions of Metals Associated with Motor Vehicle Roadways. Environmental Science & Technology 39, pp. 826–836, DOI: 10.1021/es048715f.
Moldovan, M. 2007. Origin and fate of platinum group elements in the environment. Analytical and Bioanalytical Chemistry 388, pp. 537–540, DOI: 10.1007/s00216-007-1234-y.
Moldovan et al. 2003 – Moldovan, M., Rauch, S., Morrison, G.M., Gómez, M. and Palacios, M.A. 2003. Impact of ageing on the distribution of platinum group elements and catalyst poisoning elements in automobile catalysts. Surface and Interface Analysis 35, pp. 354–359, DOI: 10.1002/sia.1541.
Molnár, Á. and Papp, A. 2017. Catalyst recycling – A survey of recent progress and current status. Coordination Chemistry Reviews 349, pp. 1–65, DOI: 10.1016/j.ccr.2017.08.011.
Moschovi et al. 2018 – Moschovi; A., Souentie, S., Yakoumis, I. and Siriwardana, A. 2018. An Integrated Circular Economy Model for Decoupling Europe from Platinum Group Metals Supply Risk in the Automotive Sector. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–5, DOI: 10.1109/EEEIC.2018.8493824.
Moschovi et al. 2021 – Moschovi, A.M., Giuliano, M., Kourtelesis, M., Nicol, G., Polyzou, E., Parussa, F., Yakoumis, I. and Sgroi, M.F. 2021. First of Its Kind Automotive Catalyst Prepared by Recycled PGMs-Catalytic Performance. Catalysts 11(8), DOI: 10.3390/catal11080942.
Nicol et al. 2021 – Nicol, G., Goosey, E., Yıldız, D.Ş., Loving, E., Nguyen, V.T., Riaño, S., Yakoumis, I., Martinez, A.M., Siriwardana, A., Unzurrunzaga, A., Spooren, J., Atia, T.A., Michielsen, B., Dominguez-Benetton, X. and Lanaridi, O. 2021. Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): Project Overview with a Focus on Processing Spent Autocatalyst: Novel pgm recycling technologies ready for demonstration at next scale. Johnson Matthey Technology Review 65(1), pp. 127–147, DOI: 10.1595/205651321X16057842276133.
Paiva et al. 2022 – Paiva, A.P., Piedras, F.V., Rodrigues, P.G. and Nogueira, C.A. 2022. Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts – Focus on leaching and solvent extraction. Separation and Purification Technology 286, DOI: 10.1016/j.seppur.2022.120474.
PHEIDIAS project a. [Online:] https://eitrawmaterials.eu/pro... [Accessed: 2023-01-24].
PHEIDIAS project b. [Online:] https://pheidias.eu/ [Accessed: 2023-01-24].
Ravindra et al. 2004 – Ravindra, K., Bencs, L. and Van Grieken, R. 2004. Platinum group elements in the environment and their health risk. Science of the Total Environment 318(1–3), pp. 1–43, DOI: 10.1016/S0048-9697(03)00372-3.
Resano et al. 2015 – Resano, M., del Rosario Flórez, M., Queralt, I. and Marguí, E. 2015. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 105, pp. 38–46, DOI: 10.1016/j.sab.2014.09.013.
Ryczkowski, J. 2003. Car catalysts (Katalizatory samochodowe). Laboratoria Aparatura Badania LAB 4, pp. 13–19 (in Polish).
Saternus et al. 2020 – Saternus, M., Fornalczyk, A., Gąsior, W., Dębski, A. and Terlicka, S. 2020. Modifications and Improvements to the Collector Metal Method Using an mhd Pump for Recovering Platinum from Used Car Catalysts. Catalysts 10(8), DOI: 10.3390/catal10080880.
Sun et al. 2022 – Sun, S., Jin, C., He, W., Li, G., Zhu, H. and Huang, J. 2022. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them. Journal of Environmental Management 305, DOI: 10.1016/j.jenvman.2021.114383.
Theakston, F. and Gudmundsson, G. Platinum 2000. Air Quality Guidelines, WHO Regional Office for Europe, Kopenhaga, Dania.
Trinh et al. 2020 – Trinh, H.B., Lee, J.-C., Suh, Y.-J. and Lee, J. 2020. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy. Waste Management 114, pp. 148–165, DOI: 10.1016/j.wasman.2020.06.030.
Twigg, M.V. 2007. Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalysis B: Environmental 70(1–4), pp. 2–15, DOI: 10.1016/j.apcatb.2006.02.029.
Unimetal Recycling Company 2022. [Online:] https://unimetalrecycling.pl/2... [Accessed: 2023-01-24].
Wilburn, D. and Bleiwas, D. 2005. Platinum-Group Metals – World Supply and Demand. U.S. Geological Survey Open-File Report.
Yakoumis et al. 2018 – Yakoumis, I., Moschovi, A.M., Giannopoulou, I. and Panias, D. 2018. Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conference Series: Materials Science and Engineering 329, DOI: 10.1088/1757-899X/329/1/012009.
Zimmermann, S. and Sures, B. 2004. Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environmental Science and Pollution Research 11, pp. 194–199.
Journals System - logo
Scroll to top