ORIGINAL PAPER
Non-destructive Methods Determination of Thermal Shock Resistance of Natural Building Stones Applicated with Different Water Repellent Chemicals on Their Surfaces
More details
Hide details
1
Kırşehir Ahi Evran University, Kaman Vocational School, Department of Mining and Mineral Extraction
Submission date: 2023-03-29
Final revision date: 2023-06-26
Acceptance date: 2023-09-04
Publication date: 2023-09-22
Corresponding author
Gökhan Eki̇nci̇oğlu
Kırşehir Ahi Evran University, Kaman Vocational School, Department of Mining and Mineral Extraction
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(3):81-101
KEYWORDS
TOPICS
ABSTRACT
Natural stones are used as coating material on the exteriors and terraces of buildings in architecture, and in places such as entrances, halls, living rooms, kitchens, bathrooms and stairs in interior spaces. Limra limestone and travertine are used as natural building materials in many structures depending on their colors. However, the water absorption values of these two natural stones are high due to their porosity, resulting in negative effects from atmospheric conditions. In this study, two different carbonate-based natural stones, limra limestone and travertine, were treated with two different water-repellent chemicals, one solvent-based and one water-based. After application, thermal shock tests were performed with a sodium chloride solution consisting of twenty cycles. The changes in the weights of samples dried to constant mass, ultrasonic permeability, Leeb hardness, and color change values in the samples were determined after the thermal shock tests. In addition, the effects of water-repellent chemicals on the formation of NaCl crystals accumulated in the pores of the rocks were examined by SEM and EDX analysis. Changes in non-destructively measured values were compared with the values of reference samples without surface protection. The solvent-based water-repellent chemical made the sample surface more hydrophobic than the water-based repellent. In both types of natural stones, the solvent-based water repellent chemical showed more protective properties against salt crystallization under thermal shock conditions compared to the water-based repellent.
METADATA IN OTHER LANGUAGES:
Polish
Metody nieniszczące oznaczania odporności na szok termiczny naturalnych kamieni budowlanych nakładanych na ich powierzchnie różnymi środkami hydrofobowymi
kamień naturalny, środek hydrofobowy, szok termiczny, analiza barwy, twardość Leeba
Kamienie naturalne są stosowane jako materiał powłokowy na zewnątrz i tarasach budynków w architekturze oraz w miejscach takich jak wejścia, hole, pokoje dzienne, kuchnie, łazienki i schody w przestrzeniach wewnętrznych. Wapień limra i trawertyn są wykorzystywane jako naturalne materiały budowlane w wielu konstrukcjach w zależności od ich kolorystyki. Jednak wartości nasiąkliwości tych dwóch kamieni naturalnych są wysokie ze względu na ich porowatość, co skutkuje negatywnym oddziaływaniem warunków atmosferycznych. W tym badaniu dwa różne kamienie naturalne na bazie węglanów, wapień limra i trawertyn, potraktowano dwoma różnymi hydrofobowymi chemikaliami, jednym na bazie rozpuszczalnika i jednym na bazie wody. Po aplikacji przeprowadzono testy szoku termicznego z roztworem chlorku sodu składające się z 20 cykli. Zmiany masy suszonych do stałej masy próbek, przepuszczalność ultradźwięków, twardość Leeba oraz zmiany barwy w próbkach określono po testach szoku termicznego. Ponadto zbadano wpływ chemikaliów hydrofobowych na powstawanie kryształów NaCl gromadzących się w porach skał za pomocą analizy SEM (skaningowa mikroskopia elektronowa) i EDX (rentgenowska dyspersja energii). Zmiany wartości mierzonych w sposób nieniszczący porównano z wartościami próbek referencyjnych bez zabezpieczenia powierzchni. Środek hydrofobowy na bazie rozpuszczalnika sprawił, że powierzchnia próbki była bardziej hydrofobowa niż powierzchnia na bazie wody. W obu typach kamieni naturalnych hydrofobowa substancja chemiczna na bazie rozpuszczalnika wykazywała lepsze właściwości ochronne przed krystalizacją soli w warunkach szoku termicznego w porównaniu z substancją na bazie wody.
REFERENCES (38)
1.
Akbay et al. 2012 –Akbay, D., Efe, T., Şengün, N., Demirdağ, S., Altındağ, R. and Erinç Koççaz, C. 2012. Investigation of freezing-thawing and thermal shock effects on various marble. MERSEM’2012 8. International Marble and Natural Stone Congress, 13–15.
2.
Bromblet, P. and Martinet, G. 2002. Joints, mortiers de pose et produits de ragréage: Les différentes pathologies: Réflexions et préconisations. Pierre actual: Matériaux, ouvrages, techniques 785, 66–79.
3.
Brues, S. 2000 . Postscriptium on Color Management” GretagMacbeth, Switzerland.
5.
Cetin, C. 1998. Providing water impermeability of marbles with silicate solutions. Master’s thesis, Süleyman Demirel University, Institute of Science and Technology, Isparta.
6.
Charola, A.E. 1995. Water-repellent Treatments for Building Stones: A practical over-view. APT Bulletin 26(2–3), 10–17, DOI: 10.2307/1504480.
7.
Coussy, O. 2006. Deformation and stress from in-pore drying-induced crystallization of salt. Journal of the Mechanics and Physics of Solids 54(8), 1517–1547, DOI: 10.1016/j.jmps.2006.03.002.
8.
Çelik et al. 2018 – Çelik, M.Y., Ersoy, M., Arsoy, Z., Sert, M. and Yeşilkaya, L. 2018. Investıgatıon of the effect of water repellent chemıcals on the weatherıng of Iscehisar andesıtes due to salt crystallızatıon. Scientific Mining Journal 57(2), 81–94.
9.
Çelik et al. 2019 – Çelik, M.Y., Sert, M. and Arsoy, Z. 2019. Investigation of the effect of surface protective resin on capillary water absorption potential of Döğer tuff and İscehisar andesite. Uludag University Journal of Engineering Faculty 24(3), 319–338, DOI: 10.17482/uumfd.476527.
10.
Derluyn et al. 2014 – Derluyn, H., Moonen, P. and Carmeliet, J. 2014. Deformation and damage due to drying induced salt crystallization in porous limestone. Journal of the Mechanics and Physics of Solids 63, 242–255, DOI: 10.1016/j.jmps.2013.09.005.
11.
Erdoğan, Y. and Yaşar, E. 2001. Evaluation of Adana-Icel Osmaniye marbles in terms of engineering properties. Turkey Marble Symposium (Mersem 2001) Proceedings Book, pp. 163–174, Afyon.
12.
Eren Sarıcı D. 2016. Thermal deterioration of marbles: Gloss. color changes. Construction and Building Materials 102, 416–421, DOI: 10.1016/j.conbuildmat.2015.10.200.
13.
Ersen et al. 2013 – Ersen, A., Verdön, İ. and Pekmezci, İ.P. 2013. Surface protectors and titanium dioxide surface coating method the effect of nano-technological surface protector application on limestone surfaces on the physical properties of the stone and protection against pollution. Journal of Restoration and Conservation Studies 11, 37–48.
14.
Ioannou, I. and Hoff, W.D. 2008. Water repellent influence on salt crystallisation in masonry. Proceedings of the Institution of Civil Engineers – Construction Materials, 161, 17–23.
15.
ISRM 2007. Rock Characterization, Testing and Monitoring – ISRM Suggested Methods. Brown, E.T. (ed.), Pergamon Pres, 211 pp.
16.
Kılıç, İ. and Gültekin, A.H. 2009. Effects of surface protection resin on water absorption and strenght of sandstone. 5th International Advanced Technologies Symposium, Karabuk University, 2196–2199.
17.
Kompatscher, M. 2004. Equotip – rebound hardness testing after D. Leeb. [In:] Conference on hardness measurements theory and application in laboratories and industries, pp. 66–72.
18.
Leeb, D. 1979. Dynamic hardness testing of metallic materials. NDT Int 12(6), 274–278.
19.
Licchelli et al. 2013 – Licchelli, M., Malagodi, M., Weththimuni, M.L. and Zanchi, C. 2013. Water-repellent properties of fluoro elastomers on a very porous stone. Effect of the application procedure. Progress in Organic Coatings 76, 495–503, DOI: 10.1016/j.porgcoat.2019.04.006.
21.
Öner, E. and Acar, K. 2006. Color measurement in textile ındustry, Seminar Notes, Adana.
22.
Özcan, A. 2008. The determınatıon of rough paper surface effect on L*a*b* values. Istanbul Commerce University Journal of Science 7(14), 53–61.
23.
Pérez et al. 2014 – Pérez, N.A., Lima, E., Bosch, P. and Méndez-Vivar, J. 2014. Consolidating materials for the volcanic tuff in western Mexico, Journal of Cultural Heritage 15, 352–358, DOI: 10.1016/j.culher.2013.07.010.
24.
Pinna et al. 2011 – Pinna, D. Salvadori, B., Porcinai, S. 2011. Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Construction and Building Materials 25(5), 2723–2732, DOI: 10.1016/j.conbuildmat.2010.12.023.
25.
Sert et al. 2022 – Sert, M., Ekincioğlu, G. and Akbay, D. 2022. Methods applied in the selection of natural stones used in the building sector. Industrial Raw Materials in the Building Sector, Serhan Haner, Editor, İksad Publishing House, Ankara, 127–160.
26.
Siegesmund, S. and Dürrast, H. 2014. Physical and mechanical properties of rocks. Siegesmund, S. and Snethlage, R. (eds). Stone in architecture, properties, durability, Springer, Berlin.
27.
Speirs, H. 1998. Introduction to prepress, BPIF, Pira International, UK. The Basic Principles of Color and Lab for Computer Publishing (2003), Linotype-Hell.
28.
Şahinbaşkan, T. 2002. Determining Color Separation Parameters in Desktop Publishing. Marmara University, Institute of Science and Technology, Department of Printing Education, PhD Thesis, 227s, Istanbul.
30.
Thaulow, N. and Sahu, S. 2004. Mechanism of concrete deterioration due to salt crystallization. Mater Charact 53, 123–127, DOI: 10.1016/j.conbuildmat.2014.06.011.
31.
Thomachot-Schneider et al. 2011 – Thomachot-Schneider, C., Gommeaux, M., Fronteau, G., Oguchi, C.T., Eyssautier, S. and Kartheuser, B. 2011. A comparison of the properties and salt weathering susceptibility of natural and reconstituted stones of the Orval Abbey (Belgium). Environmental Earth Sciences 63, 1447–1461, DOI: 10.1007/s12665-010-0743-8.
32.
TS EN 14066 – 2015. Natural Stones – Test Methods – With thermal shock effect determination of wear resistance. Turkish Standards Institute, Ankara.
33.
TS EN 14579 – 2006. Natural Stones – Experimental Methods – Determination of sound speed progression. Turkish Standards Institute, Ankara.
34.
Tulliani et al. 2014 – Tulliani, J.M., Serra, C.L. and Sangermano, M. 2014. A visible and long-wavelength photocured epoxy coating for stone protection. Journal of Cultural Heritage 15, 250–257, DOI: 10.1016/j.culher.
35.
Vallet et al. 2000 – Vallet, J.M., Bromblet, P., Vergès-Belmin, V., Pallot-Fossard, I. and Henry, F. 2000. La protection des pierres: Guide sur le shydrofuges de surface. Les cahiers techniques du cercle des partenaires du patrimoine 3. Champs-sur-Marne: Cercle des partenaires du patrimoine.
36.
Wilhelm et al. 2016 – Wilhelm, K., Viles, H. and Burke, O. 2016. Low impact surface hardness testing (Equotip) on porous surfaces – advances in methodology with implications for rock weathering and stone deterioration research. Earth Surface Processes and Landforms 41(8), 1027–1038, DOI: 10.1002/esp.3882.
37.
Yeşilay, S. 2019. A Review On the Dense Hydroxyapatite Coating Films On Marble. Izlek Academical Journal 2(1), 1–11.
38.
Yeşil, Y. 2010. Estimation of Color Values in Melange Fiber Blends by Developing a New Algorithm. Çukurova University Institute of Science and Technology, Department of Textile Engineering (Doctoral dissertation, PhD thesis, Adana).