ORIGINAL PAPER
Numerical simulation of hydrogen storage in the Konary deep saline aquifer trap
 
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences
 
 
Submission date: 2023-06-20
 
 
Final revision date: 2023-09-01
 
 
Acceptance date: 2023-09-01
 
 
Publication date: 2023-09-22
 
 
Corresponding author
Katarzyna Teresa Luboń   

Mineral and Energy Economy Research Institute, Polish Academy of Sciences
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(3):103-124
 
KEYWORDS
TOPICS
ABSTRACT
Nowadays, hydrogen is considered a potential successor to the current fossil-fuel-based energy. Within a few years, it will be an essential energy carrier, and an economy based on hydrogen will require appropriate hydrogen storage systems. Due to their large capacity, underground geological structures (deep aquifers, depleted hydrocarbon fields, salt caverns) are being considered for hydrogen storage. Their use for this purpose requires an understanding of geological and reservoir conditions, including an analysis of the preparation and operation of underground hydrogen storage. The results of hydrogen injection and withdrawal modeling in relation to the deep Lower Jurassic, saline aquifer of the Konary geological structure (trap) are presented in this paper. A geological model of the considered structure was built, allowable pressures were estimated, the time period of the initial hydrogen filling of the underground storage was determined and thirty cycles of underground storage operations (gas injection and withdrawal) were simulated. The simulations made it possible to determine the essential parameters affecting underground hydrogen storage operation: maximum flow rate of injected hydrogen, total capacity, working gas and cushion gas capacity. The best option for hydrogen storage is a two-year period of initial filling, using the least amount of cushion gas. Extracted water will pose a problem in relation to its disposal. The obtained results are essential for the analysis of underground hydrogen storage operations and affect the economic aspects of UHS in deep aquifers.
ACKNOWLEDGEMENTS
This work was supported by the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences (research subvention).
METADATA IN OTHER LANGUAGES:
Polish
Symulacja numeryczna magazynowania wodoru w głębokim solankowym poziomie wodonośnym struktury Konary
symulacja numeryczna, podziemne magazynowanie wodoru, głebokie poziomy wodonośne, zatłaczanie i odbiór wodoru
Ze względu na bardzo dużą pojemność podziemne struktury geologiczne (głębokie poziomy wodonośne, sczerpane złoża węglowodorów, kawerny solne) są rozważane do magazynowania wodoru. Ich wykorzystanie w tym celu wymaga rozpoznania uwarunkowań geologiczno-złożowych, w tym analizy przygotowania oraz pracy podziemnego magazynu wodoru. Przedstawiono wyniki modelowania zatłaczania i odbioru wodoru do głębokiego dolnojurajskiego poziomu solankowego struktury geologicznej Konary. Zbudowano model geologiczny rozważanej struktury, oszacowano dopuszczalne ciśnienia szczelinowania oraz ciśnienie kapilarne nadkładu, wyznaczono długości wstępnego okresu zatłaczania wodoru do podziemnego magazynu, przeprowadzono modelowanie przebiegu 30-letniej pracy podziemnego magazynu (zatłaczania i odbioru gazu). Przeprowadzone symulacje umożliwiły określenie istotnych parametrów wpływających na prace podziemnego magazynu wodoru: maksymalną wielkość przepływu zatłaczanego wodoru, pojemność całkowitą, pojemność roboczą i wielkość poduszki gazowej. Pozwoliły stwierdzić, że im dłuższy wstępny okres zatłaczania wodoru, tym większą musimy zastosować poduszkę gazową. Za najlepszą opcję dla magazynowania wodoru zaproponowano dwuletni okres wstępnego zatłaczania gazu do struktury; opcja z najmniejszą wielkością poduszki gazowej. Stwierdzono, że ilość wody, jaka jest eksploatowana w trakcie odzyskiwania wodoru, podczas cyklicznej eksploatacji magazynu, spada wraz ze zwiększeniem długości wstępnego okresu zatłaczania wodoru. Eksploatowana woda będzie stanowiła znaczący problem związany z jej unieszkodliwieniem. Otrzymane wyniki są istotne w analizie pracy podziemnego magazynu wodoru i wpływają na aspekty ekonomiczne UHS w głębokich solankowych poziomach wodonośnych.
REFERENCES (57)
1.
Abdin et al. 2020 – Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W. and Khalilpour, K.R. 2020. Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews 120, DOI: 10.1016/j.rser.2019.109620.
 
2.
Aftab et al. 2022 – Aftab, A., Hassanpouryouzband, A., Xie, Q., Machuca, L.L. and Sarmadivaleh, M. 2022. Toward a Fundamental Understanding of Geological Hydrogen Storage. Industrial & Engineering Chemistry Research 61(9), pp. 3233–3253, DOI: 10.1021/acs.iecr.1c04380.
 
3.
Amid et al. 2016 – Amid, A., Mignard, D. and Wilkinson, M. 2016. Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy 41, pp. 5549–5558, DOI: 10.1016/j.ijhydene.2016.02.036.
 
4.
Amirthan, T. and Perera, M.S.A. 2022. The role of storage systems in hydrogen economy: A review. Journal of Natural Gas Science and Engineering 108, DOI: 10.1016/j.jngse.2022.104843.
 
5.
Arenillas et al. 2021 – Arenillas, I.A., Ortega, M.F., Torrent, J.G. and Moya, B.L. 2021. Hydrogen as an Energy Vector: Present and Future. [In:] Ting, D. S.-K. and Carriveau, R. eds. Sustaining Tomorrow via Innovative Engineering. pp. 83–129, DOI: 10.1142/9789811228032_0003.
 
6.
Bai et al. 2014 – Bai, M., Song, K., Sun, Y., He, M., Li, Y. and Sun, J. 2014. An overview of hydrogen underground storage technology and prospects in China. Journal of Petroleum Science and Engineering 124, pp. 132–136, DOI: 10.1016/j.petrol.2014.09.037.
 
7.
Carnegie et al. 2002 – Carnegie, A., Thomas, M., Efnik, M.S., Hamawi, M., Akbar, M. and Burton, M. 2002. An Advanced Method of Determining Insitu Reservoir Stresses: Wireline Conveyed Micro-Fracturing. [In:] 10th Abu Dhabi International Petroleum Exhibition and Conference SPE 78486. pp. 1–16, DOI: 10.2523/78486-ms.
 
8.
Cavanagh, A. 2010. Pressurisation and Brine Displacement Issues for Deep Saline Formation CO2 Storage. IEAGHG, Report 2010/15. pp. 1–58.
 
9.
CGD PGI 2023 – Central Geological Database of the Polish Geological Institute. 2023. [Online:] https://geologia.pgi.gov.pl [Accessed: 2023-03-07].
 
10.
Chai et al. 2023 – Chai, M., Chen, Z., Nourozieh, H. and Yang, M. 2023. Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection. Applied Energy 334(C), DOI: 10.1016/j.apenergy.2023.120655.
 
11.
COM/2020/301 2020. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A hydrogen strategy for a climate-neutral Europe (COM/2020/301).
 
12.
Ershadnia et al. 2022 – Ershadnia, R., Singh, M., Mahmoodpour, S., Meyal, A., Moeini, F., Hosseini, S.A., Sturmer, D.M., Rasoulzadeh, M., Dai, Z. and Soltanian, M.R., 2022. Impact of geological and operational conditions on underground hydrogen storage. International Journal of Hydrogen Energy 48(4), pp. 1450–1471, DOI: 10.1016/j.ijhydene.2022.09.208.
 
13.
Feldmann et al. 2016 – Feldmann, F., Hagemann, B., Ganzer, L. and Panfilov, M. 2016. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences 75, p. 1165, DOI: 10.1007/s12665-016-5948-z.
 
14.
Fonseca et al. 2019 – Fonseca, J.D., Camargo, M., Commenge, J.M., Falk, L. and Gil, I.D. 2019. Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. International Journal of Hydrogen Energy 44, pp. 9486–9504, DOI: 10.1016/j.ijhydene.2018.09.177.
 
15.
Ghaedi et al. 2023 – Ghaedi, M., Andersen, P.Ø. and Gholami, R. 2023. Hydrogen diffusion into caprock: A semi-analytical solution and a hydrogen loss criterion. Journal of Energy Storage 64(5756), DOI: 10.1016/j.est.2023.107134.
 
16.
Hanley et al. 2018 – Hanley, E.S., Deane, J. and Gallachóir, B.Ó. 2018. The role of hydrogen in low carbon energy futures – A review of existing perspectives. Renewable and Sustainable Energy Reviews 82(3), pp. 3027–3045, DOI: 10.1016/j.rser.2017.10.034.
 
17.
Harati et al. 2023 – Harati, S., Rezaei, S., Gasanzade, F., Bauer, S., Pak, T. and Orr, C. 2023. Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers. International Journal of Hydrogen Energy 48(69), DOI: 10.1016/j.ijhydene.2023.03.363.
 
18.
Heinemann et al. 2021 – Heinemann, N., Scafidi, J., Pickup, G., Thaysen, E.M., Hassanpouryouzband, A., Wilkinson, M., Satterley, A.K., Booth, M.G., Edlmann, K. and Haszeldine, R.S. 2021. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. International Journal of Hydrogen Energy 46, pp. 39284–39296, DOI: 10.1016/j.ijhydene.2021.09.174.
 
19.
Hematpur et al. 2023 – Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M. and Blunt, M.J. 2023. Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research 7(2), pp. 111–131, DOI: 10.46690/ager.2023.02.05.
 
20.
Iglauer, S. 2022. Optimum geological storage depths for structural H2 geo-storage. Journal of Petroleum Science and Engineering 212, DOI: 10.1016/j.petrol.2021.109498.
 
21.
Jafari Raad et al. 2022 – Jafari Raad, S.M., Leonenko, Y. and Hassanzadeh, H. 2022. Hydrogen storage in saline aquifers: Opportunities and challenges. Renewable and Sustainable Energy Reviews 168, DOI: 10.1016/j.rser.2022.112846.
 
22.
Lothe et al. 2014 – Lothe, A.E., Emmel, B., Grøver, A. and Bergmo, P.E. 2014. CO2 storage modelling and capacity estimation for the Trøndelag Platform, offshore Norway – using a basin modelling approach. Energy Procedia 63, pp. 3648–3657, DOI: 10.1016/j.egypro.2014.11.394.
 
23.
Luboń, K. 2020. CO2 storage capacity of a deep aquifer depending on the injection well location and cap rock capillary pressure. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(2), pp. 173–196, DOI: 10.24425/gsm.2020.132557.
 
24.
Luboń, K. 2022. Influence of Injection Well Location on CO2 Geological Storage Efficiency. Energies 14, DOI: 10.3390/en14248604.
 
25.
Luboń, K. and Tarkowski, R. 2020. Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. International Journal of Hydrogen Energy 45, pp. 2068–2083, DOI: 10.1016/j.ijhydene.2019.11.055.
 
26.
Luboń, K. and Tarkowski, R. 2021. Influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the deep geological structure. International Journal of Hydrogen Energy 46(58), pp. 30048–30060, DOI: 10.1016/j.ijhydene.2021.06.119.
 
27.
Luboń, K. and Tarkowski, R. 2023. The influence of the first filling period length and reservoir level depth on the operation of underground hydrogen storage in a deep aquifer. International Journal of Hydrogen Energy 48(3), pp. 1024–1042, DOI: 10.1016/j.ijhydene.2022.09.284.
 
28.
Lysyy et al. 2021 – Lysyy, M., Fernø, M. and Ersland, G. 2021. Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy 46(49), pp. 25160–25174, DOI: 10.1016/j.ijhydene.2021.05.030.
 
29.
Mahdi et al. 2021 – Mahdi, D.S., Al-Khdheeawi, E.A., Yuan, Y., Zhang, Y. and Iglauer, S. 2021. Hydrogen underground storage efficiency in a heterogeneous sandstone reservoir. Advances in Geo-Energy Research 5(4), pp. 437–443, DOI: 10.46690/ager.2021.04.08.
 
30.
Matos et al. 2019 – Matos, C.R., Carneiro, J.F. and Silva, P.P. 2019. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage 21, pp. 241–258, DOI: 10.1016/j.est.2018.11.023.
 
31.
Muhammed et al. 2023 – Muhammed, N.S., Haq, M.B., Al Shehri, D.A., Al-Ahmed, A., Rahman, M.M., Zaman, E. and Iglauer, S. 2023. Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel 337, DOI: 10.1016/j.fuel.2022.127032.
 
32.
Muhammed, S.N., Haq, B., Sheri, D. Al, Al-Ahmed, A., Rahman, M.M. and Zaman, E. 2022. A review on underground hydrogen storage : Insight into geological sites , influencing factors and future outlook. Energy Reports 8, pp. 461–499, DOI: 10.1016/j.egyr.2021.12.002.
 
33.
Noussan et al. 2021 – Noussan, M., Raimondi, P.P., Scita, R. and Hafner, M. 2021. The role of green and blue hydrogen in the energy transition – a technological and geopolitical perspective. Sustainability 13(298), pp. 1–26, DOI: 10.3390/su13010298.
 
34.
Okoroafor et al. 2022 – Okoroafor, E.R., Saltzer, S.D. and Kovscek, A.R. 2022. Toward underground hydrogen storage in porous media: Reservoir engineering insights. International Journal of Hydrogen Energy 47(79), pp. 33781–33802, DOI: 10.1016/j.ijhydene.2022.07.239.
 
35.
Olabi et al. 2021. – Olabi, A.G., bahri, A. saleh, Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H. and Abdelkareem, M.A., 2021. Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy 46(45), pp. 23498–23528, DOI: 10.1016/j.ijhydene.2020.10.110.
 
36.
Pfeiffer, W.T. and Bauer, S. 2019. Comparing simulations of hydrogen storage in a sandstone formation using heterogeneous and homogenous flow property models. Petroleum Geoscience 25(3), pp. 325–336, DOI: 10.1144/petgeo2018-101.
 
37.
Pfeiffer et al. 2016 – Pfeiffer, W.T., al Hagrey, S.A., Köhn, D., Rabbel, W. and Bauer, S. 2016. Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences 75(16), pp. 1–18, DOI: 10.1007/s12665-016-5958-x.
 
38.
Pfeiffer et al. 2017 – Pfeiffer, W.T., Beyer, C. and Bauer, S. 2017. Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience 23, pp. 315–326, DOI: 10.1144/petgeo2016-050.
 
39.
Pruess et al. 1999 – Pruess, K., Oldenburg, C.M. and Moridis, G.J. 1999. TOUGH2 User’s Guide Version 2. Lawrence Berkley National Laboratory LBNL-43134 (Revised 2012), pp. 1–197, DOI: 10.2172/751729.
 
40.
Raza et al. 2022 – Raza, A., Arif, M., Glatz, G., Mahmoud, M., Al Kobaisi, M., Alafnan, S. and Iglauer, S. 2022. A holistic overview of underground hydrogen storage: Influencing factors, current understanding, and outlook. Fuel 330, DOI: 10.1016/j.fuel.2022.125636.
 
41.
Reitenbach et al. 2015 – Reitenbach, V., Ganzer, L., Albrecht, D. and Hagemann, B. 2015. Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences 73, pp. 6927–6937, DOI: 10.1007/s12665-015-4176-2.
 
42.
Sainz-Garcia et al. 2017 – Sainz-Garcia, A., Abarca, E., Rubi, V. and Grandia, F. 2017. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy 42, pp. 16657–16666, DOI: 10.1016/j.ijhydene.2017.05.076.
 
43.
Schultz et al. 2023 – Schultz, R.A., Heinemann, N., Horváth, B., Wickens, J., Miocic, J.M., Babarinde, O.O., Cao, W., Capuano, P., Dewers, T.A., Dusseault, M., Edlmann, K., Goswick, R.A., Hassanpouryouzband, A., Husain, T., Jin, W., Meng, J., Kim, S., Molaei, F., Odunlami, T., Prasad, U., Lei, Q., Schwartz, B.A., Segura, J.M., Soroush, H., Voegeli, S., Williams-Stroud, S., Yu, H. and Zhao, Q. 2023. An overview of underground energy-related product storage and sequestration. Geological Society Special Publications 528(1), DOI: 10.1144/sp528-2022-160.
 
44.
Tagliapietra et al. 2019 – Tagliapietra, S., Zachmann, G., Edenhofer, O., Glachant, J.M., Linares, P. and Loeschel, A. 2019. The European union energy transition: Key priorities for the next five years. Energy Policy 132, pp. 950–954, DOI: 10.1016/j.enpol.2019.06.060.
 
45.
Tarkowski, R. 2010. Potential geological structures to CO2 storage in the Mesozoic Polish Lowlands (characteristics and ranking) (Potencjalne struktury geologiczne do składowania CO2 w utworach mezozoiku Niżu Polskiego (charakterystyka oraz ranking)). Studia, Rozprawy, Monografie 164, pp. 1–138 (in Polish).
 
46.
Tarkowski, R. 2017. Perspectives of using the geological subsurface for hydrogen storage in Poland. International Journal of Hydrogen Energy 42(1), pp. 347–355, DOI: 10.1016/j.ijhydene.2016.10.136.
 
47.
Tarkowski, R. 2019. Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews 105, pp. 86–94, DOI: 10.1016/j.rser.2019.01.051.
 
48.
Tarkowski et al. 2011 – Tarkowski, R., Marek, S. and Dziewińska, L. 2011. Geological structures of the Mesozoic Polish Lowland for underground CO2 storage – part IV. (Struktury geologiczne mezozoiku Niżu Polskiego do podziemnego składowania CO2 – część IV). Statutory work, Archival study MEERI PAS, pp. 1–31 (in Polish).
 
49.
Tarkowski, R. and Uliasz-Misiak, B. 2022. Towards underground hydrogen storage: A review of barriers. Renewable and Sustainable Energy Reviews 162, p. 112451, DOI: 10.1016/j.rser.2022.112451.
 
50.
Tarkowski, R. and Wdowin, M. 2011. Petrophysical and Mineralogical Research on the Influence of CO2 Injection on Mesozoic Reservoir and Caprocks from the Polish Lowlands. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66(1), pp. 137–150, DOI: 10.2516/ogst/2011005.
 
51.
Tarkowski et al. 2014 – Tarkowski, R., Wdowin, M. and Manecki, M. 2014. Petrophysical and mineralogical-petrographic studies of Lower Jurassic rocks of the Zaoś and Chabowo anticline exposed to CO2 (Badania petrofizyczne i mineralogiczno- petrograficzne skał dolnej jury antykliny Zaosia i Chabowa poddanych oddziaływaniu CO2). MEERI PAS, Kraków, pp. 1–87 (in Polish).
 
52.
The Future of Hydrogen 2019. The Future of Hydrogen. Seizing today’s opportunities. 2019. [Online:] https://iea.blob.core.windows.....
 
53.
Thiyagarajan et al. 2022 – Thiyagarajan, S.R., Emadi, H., Hussain, A., Patange, P. and Watson, M. 2022. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. Journal of Energy Storage 51, DOI: 10.1016/j.est.2022.104490.
 
54.
Tokunaga, T.K. and Wan, J. 2013. Capillary Pressure and Mineral Wettability Influences on Reservoir CO2 Capacity. Reviews in Mineralogy and Geochemistry 77(1), pp. 481–503, DOI: 10.2138/rmg.2013.77.14.
 
55.
Woźniak, H. and Zawisza, L. 2011. Geomechanical evaluation of rock formation for depleted gas reservoirs – example from the Swarzów underground gas storage (Geomechaniczna ocena masywu skalnego dla potrzeb bezzbiornikowego magazynowania gazu ziemnego na przykładzie PMG Swarzów). Biuletyn PIG 446, pp. 163–172 (in Polish).
 
56.
Zeng, L. et al. 2023 – Zeng, L., Vialle, S., Ennis-King, J., Esteban, L., Sarmadivaleh, M., Sarout, J., Dautriat, J., Giwelli, A. and Xie, Q. 2023. Role of Geochemical Reactions on Caprock Integrity during Underground Hydrogen Storage. Journal of Energy Storage 65, DOI: 10.1016/j.est.2023.107414.
 
57.
Zivar, D. et al. 2021 – Zivar, D., Kumar, S. and Foroozesh, J. 2021. Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy 46, pp. 23436–23462, DOI: 10.1016/j.ijhydene.2020.08.138.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top