ORIGINAL PAPER
Recovery of lithium from waste liquid of rock salt brine using aluminum hydroxide precipitation method
More details
Hide details
1
107 Geological and Mineral Exploration Institute
2
Yangtze Normal University
These authors had equal contribution to this work
Submission date: 2024-03-31
Final revision date: 2024-09-11
Acceptance date: 2024-11-19
Publication date: 2024-12-17
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(4):47-69
KEYWORDS
TOPICS
ABSTRACT
An integrated process consisting of Li+ precipitation by Al(OH)3, roasting, water leaching, evaporation, and Li2CO3 precipitation was used to recycle Li+ from the waste liquid of rock salt brine (0.099 g/L Li+). Waste liquid from rock salt brine was discharged wastewater after NaCl crystallization and the removal of impurities in the salt manufacturing plant of the good rock salt mine. The influences of Al3+/Li+ mole ratio, Na+/Al3+ mole ratio, precipitation temperature, and time on the recovery of Li+ were investigated during Li+ precipitation by Al(OH)3 stage. The results showed that the optimal condition was Al3+/Li+ mole ratio = 2.5, Na+/Al3+ mole ratio = 2.2, precipitation temperature of 60℃ (333.15 K) for more than 20 min, whose recovery of Li+ reached 97.25%. The thermodynamic analyses of the simulated Li+–Al+–Mg2+–Cl––H2O system were conducted to construct the potential-pH (φ-pH) diagrams. The results showed that the pH value should be located in the LiCl · 2Al(OH)3 · 2H2O salt region with no formation of Mg(OH)2, which started at pH = ~6.5 and ended at pH from 10.09 to 8.55 as the temperature changed. Subsequently, the Li+ precipitate was roasting for the transformation of insoluble LiCl · 2Al(OH)3 · xH2O salt to soluble LiCl, followed by the water leaching to obtain the enriched Li+ solution (1.951 g/L Li+) with Li+ recovery of 85.52%. To meet the requirement of Li2CO3 precipitation, the enriched Li+ solution was evaporated, and Na2CO3 was added to precipitate the Li2CO3 product after SO42–, Ca2+, and Mg2+ removal. The total recovery of Li+ was 66.69% after the experimental process, and the purity of Li2CO3 product was 99.3%, which can be regarded as industrial-grade Li2CO3. In conclusion, the success in lithium recovery using the aluminum hydroxide precipitation method provided a new perspective for preparing Li2CO3 from the waste liquid of rock salt brine, which could be considered as a newly developing lithium resource to meet the dramatically increasing demand for lithium in new energy vehicle industry.
ACKNOWLEDGEMENTS
Project Supported by Technology Project of Chongqing Planning and Natural Resources Bureau (Grant No. KJ-2023008) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202101434 and Grant No. KJQN202301423). Thanks to school funding of Yangtze Normal University.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Odzysk litu z cieczy odpadowej solanki kamiennej metodą wytrącania wodorotlenkiem glinu
odzysk litu, ciecz odpadowa solanki z soli kamiennej, metoda wytrącania wodorotlenkiem glinu, analiza termodynamiczna
Do recyklingu Li+ z cieczy odpadowej solanki kamiennej zastosowano zintegrowany proces obejmujący wytrącanie Li+ przez Al(OH)3, prażenie, ługowanie wodą, odparowywanie i wytrącanie Li2CO3 (0,099 g/l Li+). Płyn odpadowy z solanki soli kamiennej odprowadzano do ścieków po krystalizacji NaCl i usunięciu zanieczyszczeń w zakładzie produkcji soli kopalni soli kamiennej Dobra. Badano wpływ stosunku molowego Al3+/Li+, stosunku molowego Na+/Al3+, temperatury i czasu wytrącania na odzysk Li+ podczas wytrącania Li+ w etapie Al(OH)3. Wyniki wykazały, że optymalnymi warunkami był stosunek molowy Al3+/Li+ = 2,5, stosunek molowy Na+/Al3+ = 2,2, temperatura wytrącania 60℃ (333,15 K) przez ponad 20 min, przy czym odzysk Li+ osiągnął 97,25%. Przeprowadzono analizy termodynamiczne symulowanego układu Li+–Al+–Mg2+–Cl––H2O w celu skonstruowania wykresów potencjał-pH (φ-pH). LiCl · 2Al(OH)3 · 2H2O obszar soli bez tworzenia Mg(OH)2, który rozpoczął się przy pH = ~6,5 i zakończył przy pH od 10,09 do 8,55 wraz ze zmianą temperatury. Następnie osad Li+ prażono w celu przekształcenia nierozpuszczalnej soli LiCl · 2Al(OH)3 · xH2O w rozpuszczalny LiCl, a następnie ługowano wodą w celu uzyskania wzbogaconego roztworu Li+ (1,951 g/L Li+) z uzyskiem Li+ wynoszącym 85,52 %. Aby spełnić wymagania dotyczące wytrącania Li2CO3, wzbogacony roztwór Li+ odparowano i dodano Na2CO3 w celu wytrącenia produktu Li2CO3 po usunięciu SO42–, Ca2+ i Mg2+. Całkowity odzysk Li+ po procesie eksperymentalnym wyniósł 66,69%, a czystość produktu Li2CO3 wyniosła 99,3%, co można uznać za Li2CO3 klasy przemysłowej. Podsumowując, sukces w odzyskiwaniu litu metodą wytrącania wodorotlenkiem glinu otworzył nową perspektywę przygotowania Li2CO3 z cieczy odpadowej solanki z soli kamiennej, który można uznać za nowo rozwijające się źródło litu w celu zaspokojenia dramatycznie rosnącego zapotrzebowania na lit w przemyśle pojazdów wykorzystujących nowe źródła energii.
REFERENCES (27)
1.
An et al. 2012 – An, J.W., Kang, D.J., Tran, K.T., Kim, M.J., Lim, T. and Tran, T. 2012. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118, pp.64–70, DOI: 10.1016/j.hydromet.2012.02.008.
2.
Barin et al. 1977 – Barin, I., Knacke, O. and Kubaschewski, O. 1977. Thermochemical properties of inorganic substances. Berlin: Springer Berlin Heidelberg.
3.
Chung et al. 2008 – Chung, K., Lee, J., Kim, W., Kim, S. and Cho, K. 2008. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. Journal of Membrane Science 325(2), pp. 503–508, DOI: 10.1016/j.memsci.2008.09.041.
4.
Han et al 2018 – Han, B., Porvali, A., Lundström, M. and Louhi-Kultanen, M. 2018. Lithium Recovery by Precipitation from Impure Solutions – Lithium Ion Battery Waste. Chemical Engineering & Technology 41(6), pp. 1205–1210, DOI: 10.1002/ceat.201700667.
5.
He et al. 2017 – He, L., Xu, W., Song, Y., Liu, X. and Zhao, Z. 2017. Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation. Separation and Purification Technology 187, pp. 214–220, DOI: 10.1016/j.seppur.2017.04.028.
6.
IEA 2024. Global Critical Minerals Outlook 2024. Paris:International Energy Agency.
7.
Kotsupalo et al. 2013 – Kotsupalo, N.P., Ryabtsev, A.D., Poroshina, I.A., Kurakov, A.A., Mamylova, E.V., Menzheres, L.T. and Korchagin, M.A. 2013. Effect of Structure on the Sorption Properties of Chlorine-containing Form of Double Aluminum Lithium Hydroxide. Russian Journal of Applied Chemistry 86(4), pp. 482−487, DOI: 10.1134/S1070427213040046.
8.
Li et al. 2009 – Li, Q., Jensen, J.O. and Bjerrum, N.J. 2009. Chemistry, electrochemistry, and electrochemical applications: aluminum. Encyclopedia of Electrochemical Power Sources, pp. 695–708, DOI: 10.1016/B978-044452745-5.00951-5.
9.
Li et al. 2019 – Li, H., Eksteen, J. and Kuang, G. 2019. Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review. Hydrometallurgy 189, pp. 105–129, DOI: 10.1016/j.hydromet.2019.105129.
10.
Li et al. 2020 – Li, X., Chen, L., Chao, Y., Chen, W., Luo, J., Xiong, J., Zhu, F., Chu, X., Li, H. and Zhu, W. 2020. Amorphous TiO2-Derived Large-Capacity Lithium Ion Sieve for Lithium Recovery. Chemical Engineering & Technology 43(9), pp. 1784–1791, DOI: 10.1002/ceat.201900374.
11.
Liu et al. 2014 – Liu, Y., Guo, Y., Yu, X., Wang, S. and Deng, T. 2014. Solid-Liquid Metastable Phase Equilibria in the Five-Component System (Li plus Na plus K+Cl+SO4+H2O) at 308.15 K. Journal of Chemical & Engineering Data 59(5), pp. 1685–1691, DOI: 10.1021/JE500140E.
12.
Liu et al. 2022 – Liu, Y., Ma, B., Lv, Y., Wang, C. and Chen, Y. 2022. Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores. Separation and Purification Technology 288, DOI: 10.1016/j.seppur.2022.120667.
13.
Ma, P. and Zhang, P. 1999. Lithium resources in china’s salt lakes & its sustainable development. Bulletin of the Chinese Academy of Sciences 13(4), pp. 225–229.
14.
Meng et al. 2019 – Meng, F., McNeice, J., Zadeh, S.S. and Ghahreman, A. 2019. Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Mineral Processing and Extractive Metallurgy Review 42, pp. 123–141, DOI: 10.1080/08827508.2019.1668387.
15.
Mostafa et al. 1995 – Mostafa, A.T.M.G., Eakman, J.M. and Yarbro, S.L. 1995. Prediction of Standard Heats and Gibbs Free Energies of Formation of Solid Inorganic Salts from Group Contributions. Industrial & Engineering Chemistry Research 34(12), pp. 4577–4582, DOI: 10.1021/IE00039A053.
16.
NBSC 2023. China Statistical Yearbook 2023. Beijing: National Bureau of Statistics of China (NBSC).
17.
Paranthaman et al. 2017 – Paranthaman, M.P., Li, L., Luo, J., Hoke, T., Ucar, H., Moyer, B.A. and Harrison, S. 2017. Recovery of Lithium from Geothermal Brine with Lithium – Aluminum Layered Double Hydroxide Chloride Sorbents. Environmental Science & Technology 51, pp. 13481–13486, DOI: 10.1021/acs.est.7b03464.
18.
Perrault, G.G. 1974. The potential-pH diagram of the magnesium-water system. Electroanalytical Chemistry and Interfacial Electrochemistry, 51, pp. 107–119, DOI: 10.1016/S0022-0728(74)80298-6.
19.
Pourbaix, M. 1974. Atlas of Electrochemical Equilibria in Aqueous Solutions(2nd English edn). Houston: National Association of Corrosion Engineers.
20.
Song et al. 2020 – Song, Y., Zhao, Z. and He, L. 2020. Lithium recovery from Li3PO4 leaching liquor: Solvent extraction mechanism of saponified D2EHPA system. Separation and Purification Technology 249, pp. 117161.
21.
Speight, J.G. 2005. Lange’s Handbook of Chemistry (16th ed.). McGRAW-HILL.
22.
Swain, B. 2016. Recovery and recycling of lithium: A review. Separation and Purification Technology 172, pp. 388–403, DOI: 10.1016/j.seppur.2016.08.031.
23.
Wang et al. 2017 – Wang, H., Zhong, Y., Du, B., Zhao, Y. and Wang, M. 2017. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 175, pp. 102–108, DOI: 10.1016/j.hydromet.2017.10.017.
24.
Xiong et al. 2021 – Xiong, J., He, L., Liu, D., Xu, W. and Zhao, Z. 2021. Olivine-FePO4 preparation for lithium extraction from brines via Electrochemical De-intercalation/Intercalation method. Desalination 520, DOI: 10.1016/j.desal.2021.115326.
25.
Xu et al. 2020 – Xu, W., Liu, D., He, L. and Zhao, Z. 2020. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine. Membranes 10(12), DOI: 10.3390/membranes10120371.
26.
Yu et al. 2014 – Yu, J., Zheng, M., Wu, Q., Nie, Z. and Bu, L. 2014. Lithium Extraction from Carbonate-type Saline Lake by Utilizing of Geothermal Solar Pond in Tibet. Acta Geologica Sinica (English Edition) 88(S1), pp. 389–390.
27.
Zhong et al. 2021 – Zhong, J., Lin, S. and Yu, J. 2021. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination 505, DOI: 10.1016/j.desal.2021.114983.