ORIGINAL PAPER
Transformations of diatomite components and changes in its technical properties caused by calcination at different temperatures – a case study of the Jawornik deposit, Poland
 
More details
Hide details
1
AGH University of Krakow, Poland
 
2
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
 
 
Submission date: 2024-05-20
 
 
Final revision date: 2024-09-07
 
 
Acceptance date: 2024-11-19
 
 
Publication date: 2024-12-17
 
 
Corresponding author
Beata Figarska-Warchoł   

AGH University of Krakow, Poland
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(4):21-46
 
KEYWORDS
TOPICS
ABSTRACT
Diatomite rocks from the eastern part of the Polish outer Carpathians come in several varieties with different colour, compactness, amount of clay and sandy substance as well as the degree of silicification. One of them is dark grey blocky diatomite, present in the Jawornik deposit and characterised by average quality. During the tests, it was thermally calcined at temperatures from 300°C to 1,200°C in order to improve its functional properties. The results of observations regarding the changes that the rock and its components underwent under conditions of increasing temperature were presented. The results of thermal analysis, X-ray diffraction and tests of physical properties (i.e. density, water absorption and Vickers microhardness) of the rock were presented. Detailed observations of the rock’s mineral components were made using a scanning microscope. Their physical changes (e.g. cracks or signs of melting) and chemical transformations were described. It has been shown that during calcination, irreversible changes occur in the mineral composition and structure of diatomite. It was proven that for the discussed diatomite the optimal calcination temperature is 900°C, as it ensures the greatest increase in its open porosity by 11% and an almost threefold increase in its hardness. The chemical composition of diatomite also changes due to the combustion of the organic matter present in it and the resulting relative increase in the 1,200 content. Calcination improves the technological features of this variety of diatomite, making it similar to the best quality varieties found in this deposit.
ACKNOWLEDGEMENTS
The study was carried out under the statutory work of the Mineral and Energy Economy Research Institute, Polish Academy of Sciences as well as AGH University of Krakow funds 16.16.140.315.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Przeobrażenia składników diatomitu i zmiany jego właściwości technicznych spowodowane kalcynacją w różnych temperaturach – na przykładzie złoża Jawornik, Polska
diatomit, obróbka cieplna, dyfrakcja rentgenowska, SEM, mikrotwardość Vickersa
Skały diatomitowe pochodzące ze wschodniej części polskich Karpat zewnętrznych występują w kilku odmianach o różnej barwie, zwięzłości, stopniu zailenia, zapiaszczenia i skrzemionkowania. Jedną z nich jest ciemnoszary diatomit o blocznym rozpadzie, powszechnie występujący w złożu Jawornik i reprezentujący tu surowiec o przeciętnej jakości. W trakcie badań został on poddany termicznej kalcynacji w temperaturach od 300 do 1200°C w celu poprawy jego właściwości użytkowych. Przedstawiono wyniki obserwacji i badań dotyczących zmian, jakim ulegała skała i jej składniki w warunkach wzrastającej temperatury. Zaprezentowano wyniki analizy termicznej, dyfrakcji rentgenowskiej i badań właściwości fizycznych (tj. gęstość, nasiąkliwość wodna czy mikrotwardość Vickersa) skały. Przeprowadzono szczegółowe obserwacje w mikroskopie skaningowym składników mineralnych skały. Opisano ich fizyczne zmiany (np. spękania czy oznaki nadtopienie) oraz chemiczne przeobrażenia. Wykazano, że podczas kalcynacji doszło do nieodwracalnych zmian w składzie mineralnym i strukturze diatomitu. Dowiedziono, że dla omawianego diatomitu optymalna temperatura kalcynacji wynosi 900°C, gdyż zapewnia ona największy wzrost jego porowatości o 11% i prawie trzykrotny wzrost jego twardości. Zmianie ulega także skład chemiczny diatomitu na skutek spalenia występującej w nim materii organicznej i wynikającego stąd względnego wzrostu zawartości 1200. Kalcynacja doprowadza do poprawy cech technologicznych tej odmiany diatomitu, upodabniając go do najlepszych jakościowo odmian występujących w złożu.
REFERENCES (58)
1.
Alraddadi et al. 2020 – Alraddadi, S., Saeed, A. and Assaedi, H. 2020. Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria. Journal of Materials Science: Materials in Electronics 31(14), pp. 11688–11699, DOI: 10.1007/s10854-020-03720-0.
 
2.
Balek, V. and Šubrt, J. 1995. Thermal behaviour of iron(III) oxide hydroxides. Pure and Applied Chemistry 67(1), pp. 1839–1842, DOI: 10.1351/pac199567111839.
 
3.
Behl, R.J. 1999. Since Bramlette (1946): The Miocene Monterey Formation of California revisited. [In:] Moores, E.M., Sloan, D. and Stout, D.L. (eds.). Classic Cordilleran Concepts: A View from California: Boulder, Colorado, Geological Society of America, Special Paper 338, DOI: 10.1130/0-8137-2338-8.301.
 
4.
Bolewski, A. and Manecki, A. 1993. Detailed mineralogy (Mineralogia szczegółowa). Warszawa: PAE (in Polish).
 
5.
Bradbury, J.P. and Krebs, W.N. 1995. Fossil continental diatoms: paleolimnology, evolution, and biochronology. [In:] Siliceous Microfossils (Short Courses in Paleontology 8). The Paleontological Society, Knoxville, Tennessee, pp. 119–138, DOI: 10.1017/S2475263000001458.
 
6.
Chen et al. 2000 – Chen, C.Y., Lan, G.S. and Tuan, W.H. 2000. Preparation of mullite by the reaction sintering of kaolinite and alumina. Journal of the European Ceramic Society 20, pp. 2519–2525, DOI: 10.1016/S0955-2219(00)00125-4.
 
7.
Chen et al. 2004 – Chen, Y.F., Wang, M.C. and Hon, M.H. 2004. Phase transformation and growth of mullite in kaolin ceramics. Journal of the European Ceramic Society 24, pp. 2389–2397, DOI: 10.1016/S0955-2219(03)00631-9.
 
8.
Crangle, R. 2024. Diatomite. Mineral Commodity Summaries, January 2024. U.S. Geological Survey.
 
9.
Ediz et al. 2010 – Ediz, N., Bentli, İ. and Tatar, İ. 2010. Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing 94, pp. 129–134, DOI: 10.1016/j.minpro.2010.02.004.
 
10.
Elmas, N and Bentli, İ. 2013. Environmental and depositional characteristics of diatomite deposit, Alayunt Neogene Basin (Kutahya), West Anatolia, Turkey. Environmental Earth Sciences 68, pp. 395–412, DOI: 10.1007/s12665-012-1745-5.
 
11.
EN 1936. Natural stone test methods – Determination of real density and apparent density. and of total and open porosity. CEN European Committee for Standarization.
 
12.
EN 13755. Natural stone test methods – Determination of water absorption at atmospheric pressure. CEN European Committee for Standarization.
 
13.
Figarska-Warchoł et al. 2015 – Figarska-Warchoł, B., Stańczak, G., Rembiś, M. and Toboła, T. 2015. Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation. Geology, Geophysics and Environment 41(4), pp. 311–331, DOI: 10.7494/geol.2015.41.4.311.
 
14.
Figarska-Warchoł et al. 2019 – Figarska-Warchoł, B., Rembiś, M. and Stańczak, G. 2019. The impact of calcination on changes in the physical and mechanical properties of the diatomites of the Leszczawka Member (the Outer Carpathians, Poland). Geology, Geophysics and Environment 45(4), pp. 269–282, DOI: 10.7494/geol.2019.45.4.269.
 
15.
Flower, R.J. 2013. Diatom Methods. Diatomites: Their Formation, Distribution, and Uses. [In:] Elias, S.A. and Mork, C.J. (eds.), Encyclopedia of Quaternary Science, Elsevier, Amsterdam, pp. 501–506.
 
16.
Frings et al. 2014 – Frings, P.J., Clymans, W., Jeppesen, E., Lauridsen, T.L., Struyf, E. and Conley, D.J. 2014. Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration. Biogeochemistry 117, pp. 255–277, DOI: 10.1007/s10533-013-9944-z.
 
17.
Goren et al. 2002 – Goren, R., Baykara, T. and Marsoglu, M. 2002. Effects of purification and heat treatment on pore structure and composition of diatomite. British Ceramic Transactions 101, pp. 177–180, DOI: 10.1179/096797802225003361.
 
18.
Ha et al. 2013 – Ha, J.H., Oh, E., Bae, B. and Song, I.H. 2013. The effect of kaolin addition on the characteristics of a sintered diatomite composite support layer for potential microfiltration applications. Ceramics International 39, pp. 8955–8962, DOI: 10.1016/j.ceramint.2013.04.092.
 
19.
Harwood et al. 2007 – Harwood, D.M., Nikolaev, V.A. and Winter, D.M. 2007. Cretaceous records of diatom evolution, radiation, and expansion. The Paleontological Society Papers 13, pp. 33–59, DOI: 10.1017/S1089332600001455.
 
20.
Johnson et al. 2021 – Johnson, S.E., Song, W.J., Cook, A.C. Vel, S.S. and Gerbi, C.C. 2021. The quartz α ↔ β phase transition: Does it drive damage and reaction in continental crust? Earth and Planetary Science Letters 553, DOI: 10.1016/j.epsl.2020.116622.
 
21.
Kaleta et al. 2007 – Kaleta, J., Papciak, D. and Puszkarewicz, A. 2007. Clinoptylolite and diatomite in respect of their usefulness for water conditioning and wastewater purification (Klinoptylolity i diatomity w aspekcie przydatności w uzdatnianiu wody i oczyszczaniu ścieków). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 23(3), pp. 21–34 (in Polish).
 
22.
Kądziołka-Gaweł et al. 2022 – Kądziołka-Gaweł, M., Wojtyniak, M. and Klimontko, J. 2022. High temperature transformation of iron-bearing minerals in basalt: Mössbauer spectroscopy studies. Mineralogia 53, pp. 10–19, DOI: 10.2478/mipo-2022-0002.
 
23.
Komraus, J.L. and Adamczyk, Z. 1999. Transformations of iron minerals during thermal processing of Tertiary basalt from the Jawor region (Przemiany minerałów żelaza podczas obróbki termicznej trzeciorzędowego bazaltu rejonu Jawora). Physicochemical Problems of Mineral Processing 33(1), pp. 73–82 (in Polish).
 
24.
Kotlarczyk, J. 1966. Diatomite horizon from the Krosno beds against the background of the geological structure of the Skole unit in the Polish Carpathians (Poziom diatomitowy z warstw krośnieńskich na tle budowy geologicznej jednostki skolskiej w Karpatach polskich). Studia Geologica Polonica. 19. Warszawa: Wyd. Geologiczne (in Polish).
 
25.
Kotlarczyk, J. 1982. The role of diatoms in sedimentation and biostratigraphy of the Polish Flysch Carpathians. Acta Geologica Academiae Scientiarum Hungaricae 25(1–2), pp. 9–21.
 
26.
Kotlarczyk, J. 1988a. Jawornik Ruski – kopalnia diatomitu. Poziom diatomitów z Leszczawki, najmłodsza olistostroma we fliszu. [In:] Kotlarczyk J., Pękala K. and Gucik S. (eds.), Karpaty Przemyskie. Przewodnik 59 Zjazdu Polskiego Towarzystwa Geologicznego, Przemyśl, 16–18 września 1988, Kraków: AGH, pp. 115–118 (in Polish).
 
27.
Kotlarczyk, J. 1988b. Level of diatomites from Leszczawka. Point B-3. Russian Jawornik. 1. Geology and properties of the raw material (Poziom diatomitów z Leszczawki. Punkt B-3. Jawornik Ruski. 1. Geologia i własności surowca). [In:] Kotlarczyk J., Pękala K. and Gucik S. (eds.), Karpaty Przemyskie. Przewodnik 59 Zjazdu Polskiego Towarzystwa Geologicznego, Przemyśl, 16–18 września 1988, Kraków: AGH, pp. 149–154 (in Polish).
 
28.
Kotlarczyk, J. 2008. Diatomites (Diatomity). [In:] Kłapyta Z. and Żabiński W. 2008. (eds.) Polish mineral sorbents (Sorbenty mineralne Polski). Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne (in Polish).
 
29.
Kotlarczyk et al. 1986 – Kotlarczyk, J., Brożek, M. and Michalski, M. 1986. Diatomites of the Polish Carpathians – occurrence, quality, processing and applications (Diatomity polskich Karpat – występowanie, jakość, przeróbka i zastosowania). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2(3–4), pp. 497–523 (in Polish).
 
30.
Kotlarczyk et al. 1987 – Kotlarczyk J. and Kaczmarska I. 1987. Two diatoms horizons in the Oligocene and (?) Lower Miocene of the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae 57, pp. 143–188.
 
31.
Koszarski, L. and Żytko, K. 1961. Jasło Shales within the Menilite-Krosno Series in the Middle Carpathians. Biuletyn Instytutu Geologicznego 166, pp. 87–232.
 
32.
Lewicka, E. 2017. Phase transitions of ferruginous minerals in the course of thermal processing of feldspar-quartz raw materials from the Sobótka region (Lower Silesia). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 33(1), pp. 93–110, DOI: 10.1515/gospo-2017-0010.
 
33.
Li et al. 2021 – Li, W., Xu, C., Xie, A., Chen, K, Yang, Y., Liu, L. and Zhu, S. 2021. Microstructure study of phase transformation of quartz in potassium silicate glass at 900°C and 1,000°C. Crystals 11, DOI: 10.3390/cryst11121481.
 
34.
Malata, T. and Poprawa, P. 2006. Evolution of the Skola subbasin (Ewolucja subbasenu skolskiego). [In:] Oszczypko N., Uchman A. and Malata E. (eds.), Paleotectonic development of the outer Carpathian basins and the Pieniny Rock Belt (Rozwój paleotektoniczny basenów Karpat zewnętrznych i pienińskiego pasa skałkowego). Kraków: UJ, pp. 103–110 (in Polish).
 
35.
Marczyk et al. 2022 – Marczyk, J., Pławecka, K., Hebdowska-Krupa, M., Nykiel, M. and Łach, M. 2022. Research on diatomite from Polish deposits and the possibilities of its use. Journal of Achievements in Materials and Manufacturing Engineering 115(1), pp. 5–15, DOI: 10.5604/01.3001.0016.2337.
 
36.
Martín-Márquez et al. 2010 – Martín-Márquez, J., Rincón, J.M. and Romero, M. 2010. Mullite development on firing in porcelain stoneware bodies. Journal of the European Cearmic Society 30, pp. 1599–1607, DOI: 10.1016/j.jeurceramsoc.2010.01.002.
 
37.
Mashlan et al. 2012 – Mashlan, M., Martinec, P., Kašlík, J., Kovářová, E. and Scucka, J. 2012. Mössbauer study of transformation of the cations during thermal treatment of glauconite in air. AIP Conference Proceedings 1489, pp. 169–173, DOI: 10.1063/1.4759486.
 
38.
Mehdilo, A. and Irannajad, M. 2021. Surface modification of ilmenite and its accompanied gangue minerals by thermal pretreatment: Application in flotation process. Transactions of Nonferrous Metals Society of China 31, pp. 2836–2851, DOI: 10.1016/S1003-6326(21)65697-2.
 
39.
Mendioroz et al. 1989 – Mendioroz, S., Belzunce, M.J. and Pajares, J.A. 1989. Thermogravimetric study of diatomites. Journal of Thermal Analysis 35, pp. 2097–2104, DOI: 10.1007/BF01911874.
 
40.
Nurdini et al. 2022 – Nurdini, N., Ilmi, M.M., Maryanti, E., Setiawan, P., Kadja, G.T.M. and Ismunandar, 2022. Thermally-induced color transformation of hematite: insight into the prehistoric natural pigment preparation. Heliyon 8, DOI: 10.1016/j.heliyon.2022.e10377.
 
41.
Opfergelt et al. 2011 – Opfergelt, S., Eiriksdottir, E.S., Burton, K.W., Einarsson, A., Siebert, C., Gislason, S.R. and Halliday, A.N. 2011. Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland. Earth and Planetary Science Letters 305, pp. 73–82, DOI: 10.1016/j.epsl.2011.02.043.
 
42.
Oszczypko, N. 2008. Outher Carpathians in Poland. [In:] McCann T. (ed), The geology of Central Europe. Vol. 2: Mesozoic and Cenozoic. London: Geological Society, pp. 1078–1081.
 
43.
Plunkett et al. 2004 – Plunkett, G.M., Whitehouse, N.J., Hall, V.A., Brown, D.M. and Baillie, M.G.L. 2004. A precisely-dated lake-level rise marked by diatomite formation in northeastern Ireland. Journal of Quaternary Science 19, pp. 3–7, DOI: 10.1002/jqs.816.
 
44.
Posi et al. 2013 – Posi, P., Lertnimoolchai, S., Sata, V. and Chindaprasirt, P. 2013. Pressed lightweight concrete containing calcined diatomite aggregate. Construction and Building Materials 47, pp. 896–901, DOI: 10.1016/j.conbuildmat.2013.05.094.
 
45.
Posi et al. 2014 – Posi, P., Lertnimoolchai, S., Sata, V., Phoo-ngernkham, T. and Chindaprasirt, P. 2014. Investigation of properties of lightweight concrete with calcined diatomite aggregate. KSCE Journal of Civil Engineering 18(5), pp. 1429–1435, DOI: 10.1007/s12205-014-0637-5.
 
46.
Reka et al. 2015 – Reka, A.A., Pavlovski, B., Anovski, T., Bogoevski, S. and Boškovski, B. 2015. Phase transformations of amorphous 1,200 in diatomite at temperature range of 1,000–1,200°C. Geologica Macedonica 29(1), pp. 87–92.
 
47.
Russocki ,Z. 1981. Variability of diatomites in the Leszczawka deposit (Zmienność diatomitów w złożu Leszczawka). [In:] Szymańska, A. (ed.), New directions of application of Polish diatomites in the national economy: scientific and technical conference (Nowe kierunki zastosowań diatomitów polskich w gospodarce narodowej: konferencja naukowo-techniczna), Przemyśl, 23–24 maja 1980, Warszawa: Wyd. Geologiczne, pp. 30–40.
 
48.
Simpraditpan et al. 2013 – Simpraditpan, A., Wirunmongkol, T., Pavasupree, S. and Pecharapa, W. 2013. Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural mineral by simple hydrothermal method. Material Research Bulletin 48, pp. 3211–3217, DOI: 10.1016/j.materresbull.2013.04.083.
 
49.
Smirnov et al. 2017 – Smirnov, P.V., Konstantinov, A.O. and Gursky, H.J. 2017. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation). Environmental Earth Sciences 76, DOI: 10.1007%2Fs12665-017-7037-3.
 
50.
Stoch, L. 1974. Clay minerals (Minerały ilaste). Warszawa: Wyd: Geologiczne (in Polish).
 
51.
Sun et al. 2013 – Sun, Z., Zhang, Y., Zheng, S., Park, Y. and Frost, R.L. 2013. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochimica Acta 558, pp. 16–21, DOI: 10.1016/j.tca.2013.02.005.
 
52.
Szydło et al. 2014 – Szydło, A., Garecka, M., Jankowski, L. and Malata, T. 2014. Paleogene microfossils from the submarine debris flows in the Skole Basin (Polish and Ukraine Outer Carpathians). Geology, Geophysics and Environment 40(1), pp. 49–65, DOI: 10.7494/geol.2014.40.1.49-65.
 
53.
Vassileva et al. 2011 – Vassileva, P., Gentscheva, G., Ivanova, E., Tzvetkova, P., Voykova, D. and Apostolova, M. 2011. Characterization of natural diatomites from Bulgaria. Comptes rendus de l’Acad´emie bulgare des Sciences 64(6), pp. 823–830.
 
54.
Vassileva et al. 2013 – Vassileva, P., Apostolova, M., Detchev, A. and Ivanova, E. 2013. Bulgarian natural diatomites: modification and characterization. Chemical Papers 67(3), pp. 342–349, DOI: 10.2478/s11696-012-0272-x.
 
55.
Yılmaz, B. and Ediz, N. 2008. The use of raw and calcined diatomite in cement production. Cement and Concrete Composites 30, pp. 202–211, DOI: 10.1016/j.cemconcomp.2007.08.003.
 
56.
Zahradník et al. 2019 – Zahradník, J., Jirásek, J., Zahradník, J. and Sivek, M. 2019. Development of the diatomite production, reserves and its processing in the Czech Republic in 1999–2018. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(2), pp. 31–48, DOI: 10.24425/gsm.2019.128515.
 
57.
Zheng et al. 2018 – Zheng, R., Ren, Z., Gao, H., Zhang, A. and Bian, Z. 2018. Effects of calcination on silica phase transition in diatomite. Journal of Alloys and Compounds 757, pp. 364–371, DOI: 10.1016/j.jallcom.2018.05.010.
 
58.
Zhi-Ying et al. 2009 – Zhi-Ying, W., Li-Pang, Z. and Yu-Xiang, Y. 2009. Structural investigation of some important Chinese diatomites. Glass Physics and Chemistry 35(6), pp. 673–679, DOI: 10.1134/S1087659609060182.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top