ORIGINAL PAPER
Selective flocculation and recovery of chrome from plant slimes using starch and sodium oleate as flocculants
More details
Hide details
1
University of the Witwatersrand
2
Botswana International University of Science and Technology
Submission date: 2022-05-09
Final revision date: 2022-10-12
Acceptance date: 2022-10-26
Publication date: 2022-12-20
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(4):205-230
KEYWORDS
TOPICS
ABSTRACT
A steady global decline in the grade of chromite ores is causing an increase in the mining of low grade and complex ores. The processing of such low grade and finely disseminated ores results in the increased production of primary and secondary slimes. Slimes have very poor recovery performance in most conventional technology and are usually disposed of into tailings storage facilities (TSF). The historic slimes in the TSFs and those arising from most chrome production processes constitute potential recoverable chrome resources. In this study, the selective flocculation of slimes from a chrome processing plant in the north west province of South Africa was conducted using raw corn starch and sodium oleate as flocculants and sodium silicate a dispersant was applied on. Limited work has been reported on the flocculation of non-synthetic chrome slimes. The results showed that a slime sample with a chrome (Cr2O3) head grade of 22.92% was upgraded to a maximum concentrate grade of 42.55% at a sodium oleate dosage of 88 g/tonslurry, a sodium silicate dosage of 44 g/tonslurry, 39.61% at a starch dosage of 106 g/tonslurry and sodium silicate dosage of 62 g/tonslurry. The corresponding recoveries using sodium oleate as a flocculent were between 80–89% and 73–79% for starch. Sodium oleate showed a better performance than starch in terms of both grade and recovery. Decantation washing tests showed that the chrome (Cr2O3) grade of the concentrate can be further increased to above 44%. These results are very encouraging as they indicate that selective flocculation can achieve satisfactory upgrade ratios and recovery when processing chrome ultrafine or slime material.
ACKNOWLEDGEMENTS
The authors would like to acknowledge the chrome processing plant in the North-West province of South Africa for providing the chrome ore slimes for this investigation. The authors would also like to acknowledge the School of Chemical and Metallurgical Engineering at the University of Witwatersrand, South Africa for the provision of the reagents, laboratory equipment and the funding for the investigation.
METADATA IN OTHER LANGUAGES:
Polish
Selektywna flokulacja i odzyskiwanie chromu ze szlamów zakładów przemysłowych przy użyciu skrobi i oleinianu sodu jako flokulantów
flokulacja selektywna, szlam chromowy, flokulant, dyspergator, odzysk, gatunek
Stały spadek jakości rud chromitowych na całym świecie powoduje wzrost wydobycia rud niskogatunkowych i wielosurowcowych. Przeróbka tak niskogatunkowych i drobnouziarnionych rud powoduje wzrost ilości szlamów pierwotnych i wtórnych. Szlam ma bardzo słabą wydajność odzysku w większości konwencjonalnych technologii i jest zwykle umieszczany w osadnikach odpadów przeróbczych (TSF – Tailings Storage Facilities). Historyczne szlamy w TSF i te powstające w większości procesów produkcji chromu stanowią potencjalne zasoby chromu do odzyskania. W pracy przeprowadzono selektywną flokulację szlamów z zakładu przetwórstwa chromu w północno-zachodniej prowincji RPA, stosując surową skrobię kukurydzianą i oleinian sodu jako flokulanty oraz krzemian sodu jako dyspergator. Odnotowano ograniczoną liczbę prac nad flokulacją niesyntetycznych szlamów chromowych. Wyniki wykazały, że próbka szlamu o zawartości chromu (Cr2O3) 22,92% została ulepszona do maksymalnego poziomu koncentratu 42,55% przy dawce oleinianu sodu 88 g/tonę szlamów i krzemianu sodu 44 g/tonę szlamów i 39,61% przy dawce skrobi 106 g/tonę szlamów i krzemianu sodu 62 g/tonę szlamów. Odpowiednie odzyski przy użyciu oleinianu sodu jako flokulanta wynosiły od 80–89% do 73–79% dla skrobi. Oleinian sodu wykazał lepsze wyniki niż skrobia zarówno pod względem jakości, jak i odzysku. Testy płukania dekantacyjnego wykazały, że odzysk chromu koncentratu (Cr2O3) można dodatkowo zwiększyć do ponad 44%. Wyniki te są bardzo zachęcające, ponieważ wskazują, że selektywna flokulacja może osiągnąć zadowalające wskaźniki poprawy i odzysku podczas przetwarzania ultradrobnego lub szlamowego materiału chromowego.
REFERENCES (33)
1.
Beklioglu, B. and Arol, A.I. 2004. Selective flocculation behavior of chrome and serpentine. Physicochemical Problems of Mineral Processing 38(1), pp. 103–112.
2.
Altin et al. 2016 – Altin, G., Inal, S., Alp, I. and Lelili, M.E. 2016. Recovery of chromite from processing plant tailings by Vertical Ring and Pulsating High-Gradient Magnetic Separation. International Black Sea Mining and Tunneling Symposium 2, Trabzon-Turkey.
3.
Çicek et al. 1998 – Çicek, T., Cocen, I. and Samanli, S. 1998. Gravimetric concentration of fine chromite tailings, in Innovations in Mineral and Coal Processing, Eds.: S. Atak, G. Önal and M. S. Çelik, CRC Press, 1st Edition, Rotterdam, Netherlands, pp. 731–736.
4.
Da Corte et al. 2019 – Da Corte, C., Bergmann, C. and Woollacott, L. 2019. Improving the separation efficiency of Southern African haematite from slimes through selective flocculation coupled with magnetic separation. The Southern African Institute of Mining and Metallurgy 119, pp. 963–972, DOI: 10.17159/2411-9717/646/2019.
5.
Dogan et al. 1998 – Dogan, M.Z., Önal, G., Guney, A. and Yucel, A.E. 1998. New developments in processing of chromite tailings, in Mineral Processing and the Environment, Eds.: G.P. Gallios and K.A. Matis, Springer 43, Dordrecht, Netherlands, pp. 281–292, DOI: 10.1007/978-94-017-2284-1_14.
6.
Drzymala, J. 2007. Mineral processing – foundations of theory and practice of minerallurgy. Wroclaw University of Technology.
7.
Hart et al. 2018 – Hart, B., Xia, L., Shaw, D.R. and Sidorkiewicz, V. 2018. The role of soluble sodium silicate for enhancing flotation selectivity of sulphides towards grade and recovery improvements: Example from a copper sulphide ore [In:] Extraction, B.R. Davis et al. (eds). The Minerals, Metals and Materials Series. Springer, Cham, pp. 2901–2913, DOI: 10.1007/978-3-319-95022-8_245.
8.
Gallios et al. 2007 – Gallios, G.P., Deliyanni, E.A., Peleka, E.N. and Matis,K.A. 2007. Flotation of chromite and serpentine. Separation and Purification Technology 55(2), pp 232–237, DOI: 10.1016/j.seppur.2006.12.015.
9.
Gaudin, A.M. 1939. Principles of Mineral Dressing. First Edition edition. McGraw-Hill Inc. US.
10.
Gaudin, A.M. 1957. Flotation. McGraw Hill Inc., New York, pp. 182–189.
11.
Guney, A. and Önal, G. 2000. Application of a new beneficiation method to ultrafine-size chromite, in Mineral Processing on the Verge of 21st Century, 1st Edition, Eds.: G. Özbayoğlu, Ç. Hoşten, M.Ü. Atalay, C. Hiçyılmaz and A.İ. Arol, Balkema, London, UK, pp. 299–303, DOI: 10.1201/9780203747117.
12.
Irannajad et al. 2018 – Irannajad, M., Salmani Nuri, O.S. and Allahkarami, E. 2018. A new approach in separation process evaluation. Efficiency ratio and upgrading curves. Physicochemical Problems of Mineral Processing 54(3), pp. 847–857, DOI: 10.5277/ppmp1886.
13.
Jeldres et al. 2019 – Jeldres, R.I., Uribe, L., Cisternas, L.A., Gutierrez, L., Leiva, W.H. and Valenzuela, J. 2019. The effect of clay minerals on the process of flotation of copper ores-A critical review. Applied Clay Science 170, pp. 57–69, DOI: 10.1016/j.clay.2019.01.013.
14.
Marsalek, R. 2012. Zeta Potential – Applications. 2nd International Conference on Environment and Industrial Innovation. IPCBEE 35, pp. 15–19.
15.
Mathur et al. 199 – Mathur, S., Singh, P. and Moudgil, B. 1999. Advances in selective flocculation technology for solid-solid separations. Elsevier Science 58(1–4), pp. 201–222, DOI: 10.1016/S0301-7516(99)00072-1.
16.
Mokeona, T. and Nheta, W. 2020. Beneficiation of South African chromite tailings using Magnetic Separation. Proceedings of the 6th World Congress on Mechanical, Chemical and Material Engineering (MCM’20, MMME) 138, DOI: 10.11159/mmme20.138.
17.
Murthy et al. 2020 – Murthy, Y.R. and Tripathy, S.K. 2020. Process optimization of a chrome ore gravity concentration plant for sustainable development. Journal of the Southern African Institute of Mining and Metallurgy 120(4), pp. 261–268. 10.17159/2411-9717/990/2020.
18.
Panda et al. 2010 – Panda, L., Biswal, S.K. and Tathavadkar, V, 2010. Beneficiation of synthetic iron ore Kaolinite mixture using selective flocculation. Journal of Minerals and Materials Characterization and Engineering 9(11), pp. 973–983, DOI: 10.4236/jmmce.2010.911070.
19.
Panda et al. 2011 – Panda, L., Das, B., Rao, D.S. and Mishra, B.K. 2011. Selective flocculation of banded hematite quartzite (BHQ) ores. The Open Mineral Processing Journal 4(1), pp. 45–51, DOI: 10.2174/1874841401104010045.
20.
Panda et al. 2013 – Panda, L., Banerjee, P.K., Biswal, S.K., Venugopal, R. and Mandre, N.R. 2013. Performance evaluation for selectivity of the flocculant on hematite in selective flocculation. International Journal of Minerals, Metallurgy and Materials 20(12), pp. 1223–1229, DOI: 10.1007/s12613-013-0844-y.
21.
Panda et al. 2015 – Panda, L., Venugopal, R., Mandre, N.R., Singh, V. and Banerjee, P.K. 2015. Assessment and mechanism investigation of selective flocculation process for ultrafine chromite particles. Separation Science and Technology 50(7), pp. 1050–1058, DOI: 10.1080/01496395.2014.1003435.
22.
Pascoe, R.D. and Doherty, E. 1997. Shear flocculation and flotation of hematite using sodium oleate. International Journal of Mineral Processing 51(1–4), pp. 269–282, DOI: 10.1016/S0301-7516(97)00033-1.
23.
Peng et al. 2020 – Peng, Y., Xiao, J., Deng, B., Wang, Z., Liu, N., Yang, D., Ding, W., Chen, T. and Wu, Q. 2020. Study on separation of fine-particle ilmenite and mechanism using flocculation flotation with sodium oleate and polyacrylamide. Physicochemical Problems of Mineral Processing 56(1), pp. 161–172, DOI: 10.5277/ppmp19094.
24.
Ravishankar et al. 2015 – Ravishankar, S.A., Pradip and Khosla, N.K. 1995. Selective flocculation of iron oxides from its synthetic mixtures with clays: A comparison of polyacrylic acid and starch polymers. International Journal of Mineral Processing 43(3–4), pp. 235–247, DOI: 10.1016/0301-7516(95)00011-2.
25.
Salmani et al. 2015 – Salmani Nuri, O.S., Allahkarami, E., Irannajad, M. and Abdollahzadeh, A. 2016. Estimation of selectivity index and separation efficiency of copper flotation process using ANN model. Geosystems Engineering 20(1), pp. 1–10, DOI: 10.1080/12269328.2016.1220334.
26.
Sworska et al. 2015 – Sworska, A., Laskowski, J.S. and Cymerman, G. 2000. Flocculation of the Syncrude fine tailings Part I: Effect of pH, polymer dosage and Mg2+ and Ca2+ cations. International Journal of Mineral Processing 60(2), pp. 143–152, DOI: 10.1016/S0301-7516(00)00012-0.
27.
Tankosić, L. and Sredić, S. 2021. Comparison of the influence of polyacrylamide and sodium oleate on selective flocculation of Goethite from sludge. Journal of Mining and Metallurgy A: Mining 57(1), pp. 43–51, DOI: 10.5937/jmma2101043t.
28.
Tripathy et al. 2015 – Tripathy, S.K., Ramamurthy, Y., Sahu, G.P. and Tathavadkar, V. 2010. Ultra-fine chromite concentration using spirals concentrator. Proceedings of the XI International Seminar on Mineral Processing Technology (MPT-2010). Jamshedpur, pp. 144–150, DOI:
http://eprints.nmlindia.org/23....
29.
Tripathy et al. 2015 – Tripathy, S.K., Banerjee, P.K. and Suresh, N. 2015. Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio. International Journal of Minerals, Metallurgy and Materials 22(3), pp. 217–224, DOI: 10.1007/s12613-015-1064-4.
30.
Tripathy et al. 2019 – Tripathy, S.K., Murthy, Y.R., Singh, V., Farrokhpay, S. and Filippov, L.O. 2019. Improving the quality of ferruginous chromite concentrates via physical separation methods. Minerals 9, DOI: 10.3390/min9110667.
31.
Xu et al. 2003 – Xu, Z., Liu, J., Choung, J.W. and Zhou, Z. 2003. Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing 68, pp. 183–196, DOI: 10.1016/S0301-7516(02)00043-1.
32.
Yu et al. 2017 – Yu, Y., Ma, L., Cao, M. and Liu, Q. 2017. Slime coatings in froth flotation. A review. Minerals Engineering 114, pp. 26–36, DOI: 10.1016/j.mineng.2017.09.002.
33.
Zhao, S. 2017. Slime coating mitigation on mineral surfaces in froth flotation by saline water. PhD Thesis, The University of Queensland. DOI: 10.14264/uql.2018.413.