The elemental composition of biomass ashes as a preliminary assessment of the recovery potential
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Mining and Geoengineering, Kraków, Poland
2
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków Poland
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2018;34(4):115–132
 
KEYWORDS
ABSTRACT
The use of biomass in the energy industry is the consequence of ongoing efforts to replace Energy from fossil fuels with energy from renewable sources. However, due to the diversity of the biomass, its use as a solid fuel generates waste with diverse and unstable chemical composition. Waste from biomass combustion is a raw material with a very diverse composition, even in the case of using only one type of biomass. The content of individual elements in fly ash from the combustion of biomass ranges from zero to tens of percent. This makes it difficult to determine the optimal recovery methods. The ashes from the combustion of biomass are most commonly used in the production of building materials and agriculture. This article presents the elemental composition of the most commonly used biomass fuels. The results of the analysis of elemental composition of fly ashes from the combustion of forest and agricultural biomass in fluidized bed boilers used in the commercial power industry were presented. These ashes are characterized by a high content of calcium (12.3–19.4%), silicon (1.2–8.3%), potassium (0.05–1.46%), chlorine (1.1–6.1%), and iron (0.8–6.5%). The discussed ashes contained no sodium. Aluminum was found only in one of the five ashes. Manganese, chromium, copper, nickel, lead, zinc, sulfur, bismuth, titanium and zirconium were found in all of the examined ashes. The analysis of elemental composition may allow for a preliminary assessment of the recovery potential of a given ash.
METADATA IN OTHER LANGUAGES:
Polish
Charakterystyka pierwiastkowych składów chemicznych popiołów ze spalania biomasy jako wstępna ocena kierunku odzysku
popiół lotny, spalanie biomasy, skład pierwiastkowy, odzysk odpadów
Stosowanie biomasy w energetyce jest działaniem w ramach zastępowania paliw kopalnych pozyskiwaniem energii ze źródeł odnawialnych. Jednak jej stosowanie jako paliwa stałego ze względu na różnorodność stosowanej biomasy powoduje powstawanie odpadów o bardzo zróżnicowanym i niestabilnym składzie chemicznym. Odpady ze spalania biomasy są surowcem o bardzo zróżnicowanym składzie nawet w przypadku spalania biomasy jednego rodzaju. Zawartość poszczególnych pierwiastków w popiołach lotnych ze spalania biomasy waha się od zera do kilkudziesięciu procent. To zróżnicowanie powoduje, że trudno znaleźć dla nich metody odzysku. Najczęściej rozpatrywane kierunki stosowania popiołów ze spalania biomasy to produkcja materiałów budowlanych i rolnictwo. W artykule przedstawiono wyniki badań pierwiastkowych składów chemicznych z podziałem na najczęściej stosowane paliwa z biomasy. Zaprezentowane zostały wyniki dotyczące pierwiastkowych składów chemicznych popiołów lotnych ze spalania biomasy leśnej i rolniczej w kotłach fluidalnych w energetyce zawodowej. Popioły te charakteryzują się wysoką zawartością: wapnia (12,3–19,4%), krzemu (1,2–8,3%), potasu (0,05–1,46%), chloru (1,1–6,1%), żelaza (0,8–6,5%). Nie stwierdzono w nich obecności sodu. Tylko w jednym z 5 popiołów stwierdzono obecność glinu. We wszystkich badanych popiołach stwierdzono obecność: manganu, chromu, miedzi, niklu, ołowiu, cynku, siarki, bizmutu, cyrkonu, tytanu. Analiza pierwiastkowych składów chemicznych może pozwolić na wstępne określenie kierunku odzysku dla danego popiołu.
 
REFERENCES (34)
1.
Ban, C.C. and Ramli, M. 2011. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resources, Conservation and Recycling 55, pp. 669–685.
 
2.
Berra et al. 2015 – Berra, M., Mangialardi, T. and Paolini, A.E. 2015. Reuse of woody biomass fly ash in cement-based materials. Construction and Building Materials 76, pp. 286–296.
 
3.
Bogush et al. 2018 – Bogush, A.A., Stegemanna, J,A., William, R. and Wood, J.G. 2018. Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching. Fuel 211, pp. 712–725.
 
4.
Ciesielczuk et al. 2016 – Ciesielczuk, T., Rosik-Dulewska, C. and Kusza, G. 2016. Extraction of phosphorus from sewage sludge ASH and sewage sludge – problem analysis (Ekstrakcja fosforu z osadów ściekowych i popiołów ze spalania osadów − analiza problemu). Polish Journal for Sustainable Development 20, pp. 21−28.
 
5.
Cruz et al. 2017 – Cruz, N.C., Rodrigues, M.S., Carvalho, L., Duarte1, A.C., Pereira, E., Römkens, P.F.A.M. and Tarelho, L.A.C. 2017. Ashes from fluidized bed combustion of residual forest biomass: recycling to soil as a viable management option. Environmental Science and Pollution Research 24, pp. 14770–14781.
 
6.
Cuenca et al. 2013 – Cuenca, J., Rodríguez, J., Martín-Morale, S.M., Sánchez-Roldán, Z. and Zamorano, M. 2013. Effects of olive residue biomass fly ash as filler in self compacting concrete. Construction and Building Materials 40, pp. 702–709.
 
7.
Demis et al. 2014 – Demis, S., Tapali, J.G. and Papadakis, V.G. 2014. An investigation of the effectiveness of the utilization of biomass ashes as pozzolanic materials. Construction and Building Materials 68, pp. 291–300.
 
8.
Emitor 2016. The emission of environmental pollution in power plants and in combined heat and power plants (Emisja zanieczyszczeń środowiska w elektrowniach i elektrociepłowniach zawodowych). Warszawa: Agencja Rynku Energii (in Polish).
 
9.
Garcia et al. 2015 − Garcia, R., Pizarro, C., Alvarez, A., Lavin, A.G. and Bueno, J.L. 2015. Study of biomass combustion wastes. Fuel 148, pp. 152−159.
 
10.
Giergiczny Z., 2009. Fly ash is a component of concrete – standardization and practice (Popiół lotny składnikiem betonu − normalizacja i praktyka). Budownictwo, Technologie, Architektura 1, pp. 40−43 (in Polish).
 
11.
Gianoncelli et al. 2013 – Gianoncelli, A., Zacco, A., Struis, R.P.W.J., Borgese, L., Depero, L.E. and Bontempi, E. 2013. Fly ash pollutants, treatment and recycling [In:] Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant diseases, remediation and recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham.
 
12.
Jukić et al. 2017 − Jukić, M., Ćurković, L., Šabarić, J. and Kerolli Mustafa, M. 2017. Fractionation of heavy metals in fly ash from wood biomass using the BCR sequential extraction procedure. Bull Environ Contam Toxicol 99, pp. 524–529.
 
13.
Kowalkowski, A. and Olejarski, J. 2013. Possibilities of using ashes from forest biomass as a source of nutrients (Możliwości wykorzystania popiołów z biomasy leśnej jako źródła elementów odżywczych) [In:] Biomasa leśna na cele energetyczne. Red. naukowa P. Gołas i A. Kaliszewski. Prace Instytutu Badawczego Leśnictwa, Sękocin Stary, pp. 147−176 (in Polish).
 
14.
Lanzerstorfer C. 2015. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences 30, pp. 191–197.
 
15.
Lanzerstorfer, C. 2017a. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences 54, pp. 178–183.
 
16.
Lanzerstorfer, C. 2017b. Grate-Fired Biomass Combustion Plants Using Forest Residues as Fuel: Enrichment Factors for Components in the Fly Ash. Waste Biomass Valor 8, pp. 235–240.
 
17.
Livingston, W.R. 2006. Biomass ash characteristics and behaviour in combustion systems. IE A Task 32/Thermalnet Workshop, Glasgow, September; 2006.
 
18.
Maeda et al. 2017 – Maeda, N., Katakura, T., Fukasawa, T., Huang, A.N., Kawano, T. and Fukui, K. 2017. Morphology of woody biomass combustion ash and enrichment of potassium components by particle size classification. Fuel Processing Technology 156, pp. 1–8.
 
19.
Mokrzycki, E. and Uliasz-Bocheńczyk, A. 2009. Management of Primary Energy Carriers in Poland Versus Environmental Protection (Gospodarka pierwotnymi nośnikami energii w Polsce a ochrona środowiska przyrodniczego). Rocznik Ochrony Środowiska – Annual Set the Environment Protection 11, pp. 103–131 (in Polish).
 
20.
Pels, J. and Sarabèr, A. 2011. Utilization of Biomass Ashes [In:] Grammelis P. eds Solid Biofuels for Energy. Green Energy and Technology. Springer, London.
 
21.
Rajamma et al. 2009 – Rajamma, R., Ball, R., Tarelho, L., Allen, G., Labrincha, J. and Ferreira, V. 2009. Characterization and use of biomass fly ash in cement-based materials. Journal of Hazardous Materials 172, pp. 1049−1060.
 
22.
Rajamma et al. 2015 – Rajamma, R., Senff, L., Ribeiro, M.J., Labrincha, J.A., Ball, R.J., Allen, G.C. and Ferreira, V.M. 2015. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B: Engineering 77, pp. 1−9.
 
23.
Romero et al. 2017 − Romero, E., Quirantes, M. and Nogales, R. 2017. Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208, pp. 1–9.
 
24.
Supancic et al. 2014 – Supancic, K., Obernberger, I., Kienzl, N. and Arich, A. 2014. Conversion and leaching characteristics of biomass ashes during outdoor storage – Results of laboratory tests. Biomass and Bioenergy 61, pp. 211−226.
 
25.
Uliasz-Bocheńczyk et al. 2015 – Uliasz-Bocheńczyk, A., Mazurkiewicz, M. and Mokrzycki, E. 2015. Fly ash from energy production − a waste, byproduct and raw material. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 31, pp. 139–149.
 
26.
Uliasz-Bocheńczyk et al. 2016 – Uliasz-Bocheńczyk, A., Pawluk, A. and Pyzalski, M. 2016. Characteristics of ash from the combustion of biomass in fluidized bed boilers (Charakterystyka popiołów ze spalania biomasy w kotłach fluidalnych). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 32, pp. 149–162 (in Polish).
 
27.
Uliasz-Bocheńczyk, A. and Mokrzycki, E. 2015. Biomass as a fuel in power industry. Rocznik Ochrony Środowiska – Annual Set the Environment Protection 17, pp. 900–913 (in Polish).
 
28.
Vassilev et al. 2010 – Vassilev, S., Baxter, D., Andersen, L. and Vassileva, C.G. 2010. An overview of the chemical composition of biomass. Fuel 89, pp. 913−933.
 
29.
Vassilev et al. 2012 – Vassilev, S., Baxter, D., Andersen, L., Vassileva, C. and Morgan, T. 2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94, pp. 1–33.
 
30.
Vassilev et al. 2013a − Vassilev, S., Baxter, D., Andersen, L. and Vassileva, C.G. 2013a. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105, pp. 40−76.
 
31.
Vassilev et al. 2013b − Vassilev, S., Baxter, D., Andersen, L. and Vassileva, C.G. 2013b. An overview of the composition and application of biomass ash. Part 2. Potential utilization, technological and ecological advantages and challenges. Fuel 105, pp. 19−39.
 
32.
Vassilev et al. 2014 – Vassilev, S.V., Vassileva, C.G. and Baxter, D. 2014. Trace element concentrations and associations in some biomass ashes. Fuel 129, pp. 292−313.
 
33.
[Online] www.tauron-wytwarzanie.pl/prod... [Accessed: 2018-10-5].
 
34.
[Online] www.gkpge.pl/Biomasa [Accessed: 2018-10-5].
 
eISSN:2299-2324
ISSN:0860-0953