Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills
,
 
,
 
 
 
More details
Hide details
1
Department of Applied Sciences, University of Québec at Abitibi-Temiscamingue (UQAT), Québec, Canada
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2013;29(1):81-100
 
KEYWORDS
ABSTRACT
In recent years, it has been observed that the performance and quality of in situ cemented paste backfill (CPB) samples are constantly lower than samples obtained from the same CPB mix poured into laboratory-prepared plastic moulds. This could be well explained by the absence of an efficient laboratory tool capable of mimicking CPB’s in situ placement, hardening, and curing conditions relating to stope size and geometry. To meet this need, a new laboratory tool named CUAPS (curing under applied pressure system) was manufactured and used to examine the effect of curing under effective stress on physico-chemical and mechanical properties of CPB, along with plastic mould samples. A comparative study was conducted for both CUAPS and mould samples containing a binder content of 3, 4.5, and 7 wt% after curing times of 7, 14, and 28 days. Results indicate that the performance of CUAPS-consolidated samples are always more realistic than those of plastic mould-unconsolidated samples mainly due to water drainage induced by consolidation. CUAPS has witnessed an advantageous effect on CPB hardening which includes the amount of bleeding water (separation of water from the fresh backfill material) and a combination of drainage of part of the mixing water and the settlement of paste backfill after its placement in the cap.
METADATA IN OTHER LANGUAGES:
Polish
Badania fizykochemiczne i mechaniczne właściwości skonsolidowanych i nieskonsolidowanych zawiesin nasyconych cementem
odpady do podsadzki, woda w zrobach, indeks geologiczny, efektywne ciśnienie, siła
W ostatnich latach obserwuje się, że wydajność i jakość próbek zawiesin nasyconych cementem (CPB – Cement Paste Backfill) in situ są stale niższe niż tych samych próbek przygotowanych w plastikowych formach w laboratorium. Może to wynikać z braku w laboratorium skutecznego narzędzia mogącego naśladować zawiesiny in situ, warunki ich utwardzania jak również rozmiary i geometrię próbek. W celu wypełnienia tej luki, w laboratorium opracowano nowe narzędzie o nazwie CUAPS (Curing Under Applied Pressure System), wytworzone i wykorzystane do zbadania wpływu ciśnienia na podstawie skutecznego nacisku na właściwości fizykochemiczne i mechaniczne CPB, jak również próbek otrzymanych z plastikowych form. Badania porównawcze przeprowadzono zarówno dla próbek CUAPS jak i próbek otrzymanych w laboratorium, zawierających lepiszcza (cementu) 3,45 i 7% wag. po 7, 14 i 28 dniach utwardzania. Wyniki wskazują, że wydajność próbek konsolidowanych CUAPS są zawsze bardziej prawdziwe (realistyczne) niż próbek otrzymanych w laboratorium, głównie z powodu odprowadzania wody w wyniku konsolidacji. Ostatecznie metoda CUAPS powoduje korzystny wpływ na utwardzenie CPB dzięki zawartości wody (separacja wody od świeżej zawiesiny odpadów z cementu) i połączeniu części wody zasobowej z zawiesiną w zrobach.
 
REFERENCES (37)
1.
Archibald et al. 1999 – Archibald J.F., Chew J., Lausch P., 1999 – Use of ground waste glass and normal Portland cement mixtures for improving slurry and paste backfill support performance. CIM Bulletin, Vol. 92, No. 1030, pp. 74–80.
 
2.
ASTM Designation D2435, 1999 – Standard test method for one-dimensional consolidation properties of soils. Annual Book of ASTM Standards, 04.08, American Society of Testing Material, MD, 207–216.
 
3.
ASTM Designation D4186, 1999 – Standard test method for one-dimensional consolidation properties of soils using controlled-strain loading. Annual Book of ASTM Standards, 04.08, American Society of Testing Material, Easton, MD, 477–481.
 
4.
ASTM Designation D806, 1999 – Standard test method for cement content of soil-cement mixtures. Annual Book of ASTM Standards, 04.08, American Society of Testing Material, Easton, MD, 85–87.
 
5.
ASTM Designation C143, 1999 – Standard test method for slump of hydraulic cement concrete. Annual Book of ASTM Standards, 04.01, American Society of Testing Material, Easton, MD, 68–76.
 
6.
ASTM Designation C39, 1999 – Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards, 04.02, American Society of Testing Material, Easton, MD, 15–23.
 
7.
Belem et al. 2000 – Belem T., Benzaazoua M., Bussière B., 2000 – Mechanical behaviour of cemented paste backfill. [In:] The 53rd Canadian Geotechnical Conference, September 18–20, Montréal, Quebec, Canada, Canadian Geotechnical Society, pp. 373–380.
 
8.
Belem et al. 2002 – Belem T., Benzaazoua M., Bussière B., Dagenais A.M., 2002 – Effects of settlement and drainage on strength development within mine paste backfill. [In:] The 9th International Conference on Tailings and Mine Waste, January 27–30, Vail, USA, Balkema: Rotterdam, pp. 139–148.
 
9.
Belem et al. 2006 – Belem T., El Aatar O., Bussière B., Benzaazoua M., Fall M., Yilma z E., 2006 – Characterization of self weight consolidated paste backfill. [In:] The 9th International Seminar on Paste and Thickened Tailings, April 3–7, Limerick, Ireland, ACG, pp. 333–345.
 
10.
Belem T., Benzaazoua M., 2008 – Design and application of underground mine paste backfill technology. Geotechnical and Geological Engineering, Vol. 26, No. 2, pp. 147–174.
 
11.
Benzaazoua et al. 2002 – Benzaazoua M., Belem T., Bussiere B., 2002 – Chemical factors that influence the performance of mine sulphidic paste backfill. Cement and Concrete Research, Vol. 32, No. 7, pp. 1133–1144.
 
12.
Benzaazoua et al. 2004 – Benzaazoua M., Fall M., Belem T., 2004 – A contribution to understanding the hardening process of cemented paste backfill. Minerals Engineering, Vol. 17, No. 2, pp. 141–152.
 
13.
Benzaazoua et al. 2006 – Benzaazoua M., Belem T., Yilmaz E., 2006 – Novel laboratory tool for paste backfill. Canadian Mining Journal, Vol. 127, No. 3, pp. 31–33.
 
14.
Bussière B., 2007 – Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Canadian Geotechnical Journal, Vol. 44, No. 9, pp. 1019–1052.
 
15.
Cayouette J., 2003 – Optimization of the paste backfill plant at Louvicourt mine. CIM Bulletin, Vol. 96, No. 1075, pp. 51–57.
 
16.
Cihangir et al. 2012 – Cihangir F., Ercikdi B., Kesimal A., Turan A., Deveci H., 2012 – Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Minerals Engineering, Vol. 30, No. 3, pp. 33–43.
 
17.
Ercikdi et al. 2010 – Ercikdi B., Kesimal A., Cihangir F., Deveci H., Alp I., 2010 – Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings. Waste Management and Research, Vol. 28, No. 5, pp. 430–435.
 
18.
Fall M., Samb S., 2008 – Effect of high temperature on strength and microstructural properties of cemented paste backfill. Journal of Fire Safety, Vol. 44, No. 44, pp. 642–665.
 
19.
Fall et al. 2010 – Fall M., Célestin J., Pokharel M., Touré M., 2010 – A contribution to understanding the effects of temperature on the mechanical properties of cemented mine backfill. Engineering Geology, Vol. 14, No. 3–4, pp. 397–413.
 
20.
Fourie et al. 2006 – Fourie A., Helinski M., Fahey M., 2006 – Filling the gap – a geomechanics perspective. Australian Centre for Geomechanics (ACG) Newsletter, Vol. 26, No. 5, pp. 1–4.
 
21.
Grabinsky M., Simms P., 2006 – Self desiccation of cemented paste backfill and implications formine design. [In:] The 9th International Seminar on Paste and Thickened Tailings, April 3–7, Limerick, Ireland, ACG, pp. 323–332.
 
22.
Hassani F.P., Bois D., 1992 – Economic and technical feasibility for backfill design in Quebec underground mines. Final report 1/2, Canada-Quebec Mineral Development Agreement, Research and Development in Quebec Mines. Contract No EADM 1989-1992.
 
23.
Helinski et al. 2007 – Helinski M., Fahey F., Fourie A.B., 2007 – Numerical modelling of cemented paste backfill deposition. Journal of Geotechnical and Geoenvironmental Engineering ASCE, Vol. 13, No. 10, pp. 1308–1319.
 
24.
Kesimal et al. 2004 – Kesimal A., Yilmaz E., Ercikdi B., 2004 – Evaluation of paste backfill test results obtained from different size slumps with varying cement contents for sulphide-rich tailings. Cement and Concrete Research, Vol. 34, No. 5, pp. 1817–1822.
 
25.
Klein K., Simon D., 2006 – Effect of specimen composition on the strength development in cemented paste backfill. Canadian Geotechnical Journal, Vol. 43, No. 3, pp. 310–324.
 
26.
Landriault D., 2001 – Backfill in underground mining: Underground mining methods engineering fundamentals and international case studies. [In:] Society for Mining Metallurgy and Exploration, Chapter 69, Littleton, Colorado, pp. 601–614.
 
27.
le Roux et al. 2005 – le Roux K.A., Bawden W.F., Grabinsky M.F., 2005 – Field properties of cemented paste backfill at the Golden Giantmine. Mining Technology: IMMTrans. Sec. A, Vol. 114,No. 2, pp. 65–80.
 
28.
Ouellet S., 2007 – Mineralogical characterization, microstructural evolution and environmental behaviour of mine cemented paste backfills. In PhD Dissertation, University of Quebec at Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Quebec, Canada, pp. 1–310.
 
29.
Revell M.B., 2004 – Paste: How strong is it? [In:] The 8th International Symposium on Mining with Backfill, September 19–21, Beijing, China, Metals Society of China, pp. 286–294.
 
30.
Servant S., 2001 – Détermination des paramètres mécaniques des remblais miniers faits de résidus ciments. [In:] Master’s Thesis, McGill University, Montreal, Quebec, pp. 1–53.
 
31.
Yilmaz E., 2010 – Investigating the consolidation behavior, hydro-mechanical and micro-structural properties of cemented paste backfills using the versatile CUAPS apparatus. [In:] Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue (UQAT), Québec, Canada, pp. 1–450.
 
32.
Yilmaz E., 2011. Advances in reducing large volumes of environmentally harmfulmine waste rocks and tailings, Mineral Resources Management, Vol. 27, No. 2, pp. 89–112.
 
33.
Yilmaz et al. 2008 – Yilmaz E., Belem T., Bussiere B., Benzaazoua M., 2008 – Consolidation characteristics of early age cemented paste backfill. [In:] The 61st Canadian Geotechnical Conference, September 21–24, Edmonton, Alberta, Canada, Canadian Geotechnical Society, pp. 797–804.
 
34.
Yilmaz et al. 2009 – Yilmaz E., Benzaazoua M., Belem T., Bussière B., 2009 – Effect of curing under pressure on compressive strength development of cemented paste backfill. Minerals Engineering, Vol. 22, No. 9–10, pp. 772–785.
 
35.
Yilmaz et al. 2010 – Yilmaz E., Belem T., Benzaazoua M., Bussière B., 2010 – Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. Geotechnical Testing Journal, Vol. 33, No. 5, pp. 351–362.
 
36.
Yilmaz et al. 2012 – Yilmaz E., Belem T., Benzaazoua M., 2012 – One-dimensional consolidation parameter of cemented paste backfills, Mineral Resources Management, Vol. 28, No. 4, pp. 1–18.
 
37.
Yilmaz et al. 2012 – Yilmaz E., Belem T., Benzaazoua M., Kesimal A., Ercikdi B., Cihangir F., 2011 – Use of high-density paste backfill for safe disposal of copper/zinc mine tailings. Mineral Resources Management, Vol. 27, No. 3, pp. 81–94.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top