ORIGINAL PAPER
The EU’s demand for selected critical raw materials used in photovoltaic industry
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Submission date: 2022-04-28
Final revision date: 2022-06-06
Acceptance date: 2022-06-08
Publication date: 2022-06-28
Corresponding author
Katarzyna Guzik
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(2):31-59
KEYWORDS
TOPICS
ABSTRACT
This paper presents the results of analyses of structure, volume and trends of demand for selected major critical raw materials (CRMs) suitable for the EU’s photovoltaic industry (PV). In order to achieve the EU’s goals in terms of the reduction of greenhouse gas emission and climate neutrality by 2050, the deployment of energy from renewable sources is of key importance. As a result, a substantial development of wind and solar technologies is expected. It is forecasted that increasing the production of PV panels will cause a significant growth in the demand for raw materials, including CRMs. Among these, silicon metal, gallium, germanium and indium were selected for detailed analyses while boron and phosphorus were excluded owing to small quantities being utilized in the PV sector. The estimated volume of the apparent consumption in the EU does not usually exceed 0.1 million tonnes for high purity silicon metal, a hundred tonnes for gallium and indium and several dozen tonnes for germanium. The major net-importers of analyzed CRMs were Germany, France, Spain, Czech Republic, the Netherlands, Slovakia and Italy. The largest quantities of these metals have been utilized by Germany, France, Belgium, Slovakia and Italy. The PV applications constitute a marginal share in the total volume of analyzed metal total end-uses in the EU (10% for silicon metal, 5% for gallium, 13% for germanium and 9% for indium). As a result, there is a number of applications that compete for the same raw materials, particularly including the production of electronic equipment. The volume of the future demand for individual CRMs in PV sector will be strictly related to trends in the development of PV-panel production with crystalline silicon technology currently strongly dominating the global market.
ACKNOWLEDGEMENTS
This paper has been supported by the Polish National Agency for Academic Exchange under Grant No PPI/APM/2019/1/00079/U/001.
METADATA IN OTHER LANGUAGES:
Polish
Zapotrzebowanie UE na wybrane surowce krytyczne wykorzystywane w fotowoltaice
surowce krytyczne, energia odnawialna, fotowoltaika, popyt na surowce mineralne
W artykule przedstawiono wyniki analizy struktury, wielkości i trendów zapotrzebowania Unii Europejskiej (UE) na wybrane surowce krytyczne wykorzystywane w technologiach fotowoltaicznych. Dla osiągnięcia celów UE w zakresie ograniczenia emisji gazów cieplarnianych i uzyskania neutralności klimatycznej w perspektywie 2050 r. kluczowe znaczenie ma wykorzystanie energii ze źródeł odnawialnych. W efekcie prognozowany jest znaczny rozwój energetyki wiatrowej i słonecznej. Przewidywany wzrost produkcji paneli fotowoltaicznych skutkował będzie zwiększonym zapotrzebowaniem na surowce, w tym zaliczane do grupy krytycznych dla UE. Spośród nich do szczegółowych analiz wybrano krzem metaliczny, gal, german i ind, jednocześnie pomijając bor i fosfor, wykorzystywane w zastosowaniach fotowoltaicznych w niewielkich ilościach. Szacunkowe zużycie pozorne tych surowców w UE w ostatnich latach zwykle nie przekraczało 0,1 mln ton dla krzemu metalicznego o wysokiej czystości, 100 ton dla galu i indu oraz kilkadziesiąt ton w przypadku germanu. Głównymi ich importerami netto były Niemcy, Francja, Hiszpania, Czechy, Holandia, Słowacja i Włochy. Największe ilości analizowanych metali zużywane były przez Niemcy, Francję, Belgię, Słowację i Włochy. Produkcja paneli fotowoltaicznych stanowi niewielki udział w łącznych zastosowaniach końcowych krzemu (10%), galu (5%), germanu (13%) i indu (9%). W związku z tym wiele sektorów przemysłu, w tym m.in. sprzętu elektronicznego, konkuruje o dostawy tego samego materiału. Wielkość przyszłego zapotrzebowania na poszczególne surowce krytyczne w sektorze energii fotowoltaicznej będzie ściśle uzależniona od trendów rozwoju poszczególnych technologii produkcji paneli, z silnie dominującą obecnie na rynku technologią wykorzystującą krzem krystaliczny.
REFERENCES (58)
1.
BGS 2021 – World Mineral Production 2015–2019 and previous editions – Brown T.J., Idoine N.E., Wrighton C.E., Raycraft E.R., Hobbs S.F., Shaw R.A., Everett P., Deady E.A., Kresse C. British Geological Survey, 2021. Keyworth, Nottingham. [Online:]
https://www2.bgs.ac.uk/mineral... [Accessed: 2022-02-10].
2.
Butcher, T. and Brown, T. 2014. Gallium. [In:] Critical Minerals Handbook. Gunn G. ed. Publisher J. Wiley & Sons. Chapter 7, pp. 257–305.
3.
Carrara et al. 2020 – Carrara, S., Alves Dias, P., Plazzotta B. and Pavel, C. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system. EUR 30095 EN, Publication Office of the European Union. Luxembourg, DOI: 10.2760/160859.
4.
Carvalho et al. 2017 – Carvalho, M., Dechezlepretre, A. and Glachant, M. 2017. Understanding the dynamics of global value chains for solar photovoltaic technologies. Economic Research Working Paper No. 40, p. 31.
5.
COM/2019/640 – The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640; European Commission: Brussels, Belgium, 2019.
6.
COM/2021/550 – Fit for 55: delivering the EU’s 2030 Climate Target on the way to climate neutrality. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions Empty. COM (2021) 550 final; European Commission: Brussels, Belgium, 2021.
7.
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance).
8.
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance).
9.
Drózd, A. 2006. Physics and technology of the PN junction (Fizyka i technologia złącza PN). [Online:]
http://qps.web.cern.ch/externa... [Accessed: 2022-02-10] (in Polish).
10.
EC 2017 – European Commission. Study on the Review of the List of Critical Raw Materials–Criticality Assessment. Critical Raw Materials Factsheets; Deloitte Sustainability: New York, NY, USA; British Geological Survey: Nottingham, UK; Bureau de Recherches Géologiques et Minières: Orléans, France; Netherlands Organisation for Applied Scientific Research: Hague, The Netherlands, 2017.
11.
EC 2018 – European Commission, Report on Critical Raw Materials in the Circular Economy, 2018. Publication Office of the European Union. Luxemburg.
12.
EC 2020a – European Commission, Critical materials for strategic technologies and sectors in the EU – a foresight study, 2020. EU 2020.
13.
EC 2020b – European Commission, Study on the EU’s List of Critical Raw Materials – Final Report; Brussels, Belgium, 2020.
14.
EC 2020c – European Commission, Study on the EU’s List of Critical Raw Materials, Factsheets on Critical Raw Materials. Publication Office of the European Union. Luxembourg. 2020, DOI: 10.2873/92480. [Online:]
https://rmis.jrc.ec.europa.eu/....
15.
ESMC 2021a – Dominant PV trade flows in Europe. The European Solar Manufacturing Council (ESMC). Brussels, Belgium. 2021. pp. 9. [Online:]
https://esmc.solar/wp-content/... [Accessed: 2022-02-10].
16.
ESMC 2021b – Solar manufacturing renaissance in Europe — appeal for RRF Commitment. The European Solar Manufacturing Council (ESMC). Brussels, Belgium. 2021. pp. 12. [Online:]
https://esmc.solar/wp-content/... [Accessed: 2022-02-10].
18.
Gallagher et al. 1986 – Gallagher, B., Alexander, P. and Burger, D. 1986. Electricity from Photovoltaic Solar Cells: Flat-Plate Solar Array Project final report. vol. 5. Process development. JPL Publication, 86-31, NASA, Springfield, VA. USA. 1986. pp. 72. [Online:]
https://authors.library.caltec... [Accessed: 2022-02-10].
20.
IRENA 2019 – Future of solar photovoltaic. Deployment, investment, technology, grit integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi).
21.
IRENA 2021 – Renewable Energy Capacity Statistics 2021, IRENA – The International Renewable Energy Agency. [Online:] www.irena.org [Accessed: 2021-07-16].
22.
Jean et al. 2015 – Jean, J., Brown, P.R., Jaffe, R.L., Buonassisi, T. and Bulović, V. 2015. Pathways for solar photovoltaics. Energy & Environmental Science 8, pp. 1200–1219, DOI: 10.1039/C4EE04073B.
23.
Kim, E.-Y. and Kim, J. 2013. Effects of the Boron-Doped p+ emitter on the efficiency of the n-Type Silicon Solar Cell. Advances in Materials Science and Engineering, DOI: 10.1155/2013/974507.
24.
Klugman-Radziemska, E. 2014. Technological progress in photovoltaics (Technologiczny postęp w fotowoltaice). Czysta Energia 5. [Online:]
https://www.cire.pl/pliki/2/te... [Accessed: 2022-02-10] (in Polish).
25.
Kochanek, E. 2021. Evaluation of energy transition scenarios in Poland. Energies 14, DOI: 10.3390/en14196058.
26.
Liobikiene, G. and Butkus, M. 2017. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renewable Energy 106, pp. 298–309, DOI: 10.1016/j.renene.2017.01.036.
27.
Lokanc et al. 2015 – Lokanc, M., Eggert, R. and Redlinger, M. 2015. The Availability of Indium: The Present, Medium Term, and Long Term National Renewable Energy Laboratory (NREL). [Online:]
https://www.nrel.gov/docs/fy16....
28.
Mihailetchi et al. 2008 – Mihailetchi, V.D., Geerligs, L.J., Komatsu, Y., Buck, T., Röver, I., Wambach, K., Knopf, C. and Kopecek, R. 2008. High efficiency industrial screen printed N-type mc-Si solar cells with front boron emitter. Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. pp. 1–5, DOI: 10.1109/PVSC.2008.4922846.
29.
Moss et al. 2011 – Moss, R.L., Tzimas, E., Kara, H., Willis, P. and Kooroshy, J. 2011. Critical Metals in Strategic Energy Technologies. Assessing rare metals as supply-chain bottlenecks in low-Carbon energy technologies. Publication Office of the European Union. Luxembourg, DOI: 10.2790/35600.
30.
Musiał et al. 2021 – Musiał, W., Zioło, M., Luty, L. and Musiał, K. 2021. Energy policy of European Union member states in the context of renewable energy sources development. Energies 14, DOI: 10.3390/en14102864.
31.
Nassar et al. 2016 – Nassar, N.T., Wilburn, D.R. and Goonan, T.G. 2016. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios. Applied Energy 183, pp. 1209–122, DOI: 10.1016/j.apenergy.2016.08.062.
32.
Photovoltaics Report 2022 – Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH. Freiburg, Germany. 2022. [Online:]
https://www.ise.fraunhofer.de/... [Accessed: 2022-02-10].
34.
Recart et al. 2007 – Recart, F., Freire, I., Pérez, L., Lago-Aurrekoetxea, R., Jimeno, J.C. and Bueno, G. 2007. Screen printed boron emitters for solar cells. Solar Energy Materials and Solar Cells 91(10), pp. 897–902, DOI: 10.1016/j.solmat.2007.02.005.
35.
Rongguo et al. 2016 – Rongguo, C., Juan, G., Liwen, Y., Huy, D. and Liedtke, M. 2016. Supply and Demand of Lithium and Gallium. BGR. Hannover. [Online:]
https://www.bgr.bund.de/EN/The... [accessed on 15 February 2022].
36.
Ronsse, S. 2020. Zinc, lead, silver and indium. Linking the Bolivian minerals to the European industry. Make ICT Fair project report. November 2020.
37.
Saur Energy International 2021. Top 10 Polysilicon Rankings for 2020 – The Future To be 90 Percent China. [Online:]
https://www.saurenergy.com/sol... [Accessed: 2022-02-10].
38.
SCRREEN 2019a – Validation Workshop on Critical Raw Materials, 10–12 September 2019, Thon Hotel Brussels City Centre.
39.
SCRREEN 2019b – Report on the future use of critical raw materials. Tercero Espinoza L., Loibl A., Langkau S., De Koning A., van der Voet E., Michaux S. [Online:]
http://scrreen.eu/results/.
40.
Solar Power Europe 2020 – SolarPower Europe: EU Market Outlook for Solar Power 2020–2024. SolarPower Europe. Brussels, Belgium. 2020. pp. 60. [Online:]
https://www.solarpowereurope.o... [Accessed: 2022-02-10].
41.
Stryczewska ed. 2012 – Stryczewska, H.D., Nalewaj, K., Goleman, R., Ratajewicz-Mikołajczak, E. and Pawłat, J. 2012. Renewable energies. Overview of technologies and applications (Energie odnawialne. Przegląd technologii i zastosowań). Lublin: Politechnika Lubelska, pp. 161. [Online:]
http://bc.pollub.pl/dlibra/pub... [Accessed: 2022-02-10] (in Polish).
42.
USGS 2021 – Minerals Yearbook. U.S. Department of the Interior U.S. Geological Survey.
43.
USGS 2022 – Mineral Commodity Summaries. U.S. Geological Survey.
45.
Vaqueiro-Contreras et al. 2019 – Vaqueiro-Contreras, M., Markevich, V.P., Coutinho, J., Santos, P., Crowe I.F., Halsall, M.P. Hawkins, I., Lastowskii, S.B., Murin, L.I. and Peaker, A.R. 2019. Identification of the mechanism responsible for the boron oxygen light induced degradation in silicon photovoltaic cells. Journal of Applied Physics 125, p. 16, DOI: 10.1063/1.5091759.
46.
WMD 2021 – World Mining Data 2021. Federal Ministry Republic of Austria Agriculture, Regions and Tourism. Vienna 2021.
47.
Wright et al. 2021 – Wright, M., Hallam, B., Stefani, B.V. 2021. The sunlight that powers solar panels also damages them. ‘Gallium doping’ is providing a solution. [Online:]
https://theconversation.com/th... [Accessed: 2021-08-16].
48.
Xakalashe, B.S. and Tangstad, M. 2011. Silicon processing: from quartz to crystalline silicon solar cells. [In:] Jones R.T. and den Hoed P. ed. Southern African.
49.
Zuser, A. and Rechberger, H. 2011. Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resources, Conservation and Recycling 56, pp. 56–65, DOI: 10.1016/j.resconrec.2011.09.004.