ORIGINAL PAPER
The development and utilization of bauxite resources in the Guizhou Province and relevant challenges to the ecology and the environment
,
 
,
 
Pan Wu 1,3
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
College of Resources and Environmental Engineering, Guizhou University,Guiyang 550025, China
2
Natural Resources Survey and Planning Institute, Guizhou Province.Guiyang 550004, China
3
Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China
CORRESPONDING AUTHOR
Pan Wu   

College of Resources and Environmental Engineering, Guizhou University,Guiyang 550025, China
Submission date: 2022-03-27
Final revision date: 2022-06-07
Acceptance date: 2022-06-16
Publication date: 2022-06-28
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(2):5–30
 
KEYWORDS
TOPICS
ABSTRACT
The environmental problems caused by the development and utilization of mineral resources have become important factors affecting ecological security. Guizhou is a Chinese province with relatively developed paleoweathered sedimentary bauxite deposits, abundant resource reserves, and a long history of mining. And, the demand for bauxite in Guizhou is expected to continue to grow. However, long-term or unreasonable resource development has produced a series of prominent environmental problems, such as the occupation and destruction of land resources and heavy metal pollution in soil and water bodies. Based on the existing research results in China and abroad, this paper analyzes the current situation, distribution characteristics, and development and utilization of bauxite resources in Guizhou to explain the corresponding environmental impacts. The results show that because of the many types and high concentrations of associated elements in bauxite and the high alkalinity, heavy metal components, and radioactive elements in red mud, the development and utilization of bauxite resources are associated with higher environmental risk. And more impact of bauxite mining on regional biodiversity, soil, air, surface water, and groundwater need to be evaluated. This paper also proposes coping strategies or countermeasures of environmental governance and control to achieve the green, sustainable and high-quality development of bauxite-related industries for meeting future environmental requirements.
ACKNOWLEDGEMENTS
This work was funded by the National Natural Science Foundation of China, Project of Karst Scientific Research Centre of the People’s Government of Guizhou Province (U1612442), the High-Level Talent Training Program in Guizhou ([2016]5664).
METADATA IN OTHER LANGUAGES:
Polish
Rozwój i wykorzystanie zasobów boksytu w prowincji Guizhou oraz istotne wyzwania dla ekologii i środowiska
Guizhou, boksyt, rozwój i wykorzystanie, środowisko ekologiczne, środki zaradcze
Problemy środowiskowe spowodowane zagospodarowaniem i wykorzystaniem surowców mineralnych stały się ważnymi czynnikami wpływającymi na bezpieczeństwo ekologiczne. Guizhou to chińska prowincja ze względnie rozwiniętymi osadowymi złożami boksytu, bogatymi rezerwami surowców i długą historią wydobycia. Oczekuje się, że popyt na boksyt w Guizhou będzie nadal rósł. Jednak długoterminowy lub nieracjonalny rozwój wykorzystania zasobów spowodował szereg znaczących problemów środowiskowych, takich jak: zajmowanie i niszczenie zasobów ziemi oraz zanieczyszczenie metalami ciężkimi gleby i zbiorników wodnych. W oparciu o istniejące wyniki badań w Chinach i za granicą, w artykule dokonano analizy obecnej sytuacji, charakterystyki dystrybucji oraz rozwoju i wykorzystania zasobów boksytu w Guizhou, w celu wyjaśnienia odpowiedniego wpływu na środowisko. Wyniki pokazują, że ze względu na wiele rodzajów i wysoką koncentrację towarzyszących pierwiastków w boksycie oraz wysoką alkaliczność, składniki metali ciężkich i pierwiastki radioaktywne w czerwonym szlamie, rozwój i wykorzystanie zasobów boksytu wiążą się z wyższym ryzykiem dla środowiska. Ponadto należy ocenić większy wpływ wydobycia boksytu na regionalną bioróżnorodność, glebę, powietrze, wody powierzchniowe i gruntowe. Niniejsza praca proponuje również strategie radzenia sobie lub środki zaradcze zarządzania i kontroli środowiska w celu osiągnięcia ekologicznego, zrównoważonego i wysokiej jakości rozwoju przemysłu związanego z boksytem dla spełnienia przyszłych wymagań środowiskowych.
 
REFERENCES (116)
1.
Agatzini-Leonardou et al. 2008 – Agatzini-Leonardou, S., Oustadakis, P., Tsakiridis, P.E. and Markopoulos, C. 2008. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal Hazard Mater 157, pp. 579–86.
 
2.
Akabzaa, T. and Darimani, A. 2001. Impact of mining sector investment in Ghana: A study of the Tarkwa mining region. Third World Network, 11, pp. 47–61.
 
3.
Badamfirooz et al. 2022 – Badamfirooz, J., Sarkheil, H., Mousazadeh, R. and Ayatollahi, F. 2022. A proposed framework for estimating the environmental damage cost of mining activities in line with the goals of sustainable mining: a case study of Sungun-Ahar Copper Mine, Iran. International Journal of Mining and Geo-Engineering.
 
4.
Borra et al. 2016 – Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven, T. 2016. Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy 2, pp. 28–37.
 
5.
Bouchoucha et al. 2019 – Bouchoucha, M., Chekri, R., Leufroy, A., Jitaru, P., Millour, S., Marchond, N., Chafey, C., Testu, C., Zinck, J. and Cresson, P. 2019. Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean). Science of the Total Environment, 690, 16–26.
 
6.
Chen, B. and Chen, S.Y. 2006. Complex utilization of red mud and its safety pile-up. Technology and Development of Chemical Industry 35, pp. 32–35 (in Chinese).
 
7.
Chen et al. 2008 – Chen, W.Q., Shi, L. and Qian, Y. 2008. Description of anthropogenic aluminum cycles. Resources Science 30, pp. 1004–1012 (in Chinese).
 
8.
Clark et al. 2015 – Clark, M.W., Johnston, M. and Reichelt-Brushett, A.J. 2015. Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants. Applied Geochemistry 56, pp. 1–10.
 
9.
Csavina et al. 2012 – Csavina, J., Field, J., Taylor, M.P., Gao, S., Landázuri, A., Betterton, E.A. and Sáez, A.E. 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of The Total Environmen 433, pp. 58–73.
 
10.
Cui et al. 2014 – Cui, T., Jiao, Y.Q., Du, Y.S., Wang, X.M., Lei, Z.Y., Weng, S.F. and Jin, Z.G. 2014. Sedimentary palaeogeography and its mineralization significance of the Early Permian bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography 16, pp. 9–18 (in Chinese).
 
11.
Cui et al. 2021 – Cui, L.R., Ye, L.L., Chen, Y.S., Yan, C.F. and Jiang, J.P. 2021. Spatial Distribution Characteristics and Pollution Assessment of Heavy Metals in Reclaimed Land of A Bauxite Mine Region in Guangxi. Ecology and Environmental Sciences 1–12 (in Chinese).
 
12.
Dauvin, J. 2010. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea). Marine Pollution Bulletin 60, pp. 197–206, DOI: 10.1016/j.marpolbul.2009.09.026.
 
13.
Denise et al. 2016 – Denise, R.F., Sergio, J.M., Brendan, J.S., Mark, K.C., Jonathan, P.L. and Alan, T.M. 2016. Temperature and light drive manganese accumulation and stress in crops across three major plant families. Environmental and Experimental Botany 132, DOI: 10.1016/j.envexpbot.2016.08.008.
 
14.
Ding et al. 1992 – Ding, J.P., Mao, J.Q. and Wang, W.J. 1992. A Research on the Environmental Hydrogeology of Karst Leakage of Red Mud Dump in Zhatang. Guizhou Geology 9, pp. 190–196 (in Chinese).
 
15.
Ding et al. 1998a – Ding, J.P., Mao, J.Q. and Gu, S.Y. 1998a. A Study on Groundwater Pollution and Control of Fluoride in Guiyang Dam Karst Area. Environmental Protection and Technology 4, pp. 5–8 (in Chinese).
 
16.
Ding et al. 1998b – Ding, J.P., Yan, G.Q. and Wang, W.J. 1998b. A Study on Leakage Pollution and Groundwater Protection Around an Industrial Waste Residue Site in Karst Region. Carsologica Sinica 17, pp. 2–7 (in Chinese).
 
17.
DNRP (Department of Natural Resources of Guizhou Province). 2020. Natural Resources Statistical Bulletin of Guizhou Province. [Online] https://zrzy.guizhou.gov.cn/wz.... 2022.5.20.
 
18.
Entwistle et al. 2019 – Entwistle, J.A., Hursthouse, A.S., Marinho Reis, P.A. and Stewart, A.G. 2019. Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Current Pollution Reports 5, pp. 67–83, DOI: 10.1007/s40726-019-00108-5.
 
19.
Feng et al. 2016 – Feng, A.S., Wu, B., Lv, Z.F. and Guo, M. 2016. An Investigation on Mining Recovery, Processing Recovery and Comprehensive Recovery of Bauxite Mines in China. Conservation And Utilization Of Mineral Resources 16–18 (in Chinese).
 
20.
Fontanier et al. 2012 – Fontanier, C., Fabri, M., Buscail, R., Biscara, L., Koho, K., Reichart, G.J., Cossa, D., Galaup, S., Chabaud, G. and Pigot, L. 2012. Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): assessing the environmental impact of bauxite red mud disposal. Marine Pollution Bulletin 64, pp. 1895–1910, DOI: 10.1016/j.marpolbul.2012.06.016.
 
21.
Garau et al. 2010 – Garau, G., Silvetti, M., Deiana, S., Deiana, P. and Castaldi, P. 2010. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials 185, pp. 1241–1248, DOI: 10.1016/S2095-3119(14)60894-7.
 
22.
Gelencsér et al. 2011 – Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., Nyirő-Kósa, I., Csákberényi-Malasics, D., Tóth, Á. and Czitrovszky, A. 2011. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environmental Science & Technology 45, pp. 1608–1615.
 
23.
Ghose, A.K. 2009. Technology vision 2050 for sustainable mining. Procedia Earth and Planetary Science 1, pp. 2–6.
 
24.
Gräfe et al. 2011 – Gräfe, M., Power, G. and Klauber, C. 2011. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108, pp. 60–79.
 
25.
Guan, J.H. 2000. Study on recovering Fe from red mud with SLon vertical ring and pulsating high gradient magnetic separator. Nonferrous Metals Science and Engineering 14, pp. 15–18 (in Chinese).
 
26.
Heemskerk, M. and Kooye, R. 2003. Challenges to Sustainable Small-Scale Mine Development in Suriname.
 
27.
Hens, L. and Boon, E.K. 1999. Institutional, Legal, and Economic Instruments in Ghana’s Environmental Policy. Environmental management 24, pp. 337–351.
 
28.
Hind et al. 1999 – Hind, A.R., Bhargava, S.K. and Grocott, S.C. 1999. The surface chemistry of Bayer process solids: a review. Colloids and surfaces A: Physicochemical and Engineering Aspects 146, pp. 359–374, DOI: 10.1016/S0927-7757(98)00798-5.
 
29.
Hu et al. 2018 – Hu, W., Nie, Q., Huang, B., Shu, X. and He, Q. 2018. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production 186, pp. 799–806, DOI: 10.1016/j.jclepro.2018.03.086.
 
30.
Huang et al. 2009 – Huang, Z.C., Cai, L.B., Zhang, Y.B., Yang, Y.B. and Jiang, T. 2009. Study on the Sponge Iron Preparation by Direct Reduction of High Iron Red Mud by Bayer Process. Metal Mine 173–177 (in Chinese).
 
31.
Huang et al. 2021 – Huang, J., Yinping, L. and Yue, P. 2021. Review on the evaluation of green development of mining industry. IOP Conference Series: Earth and Environmental Science 859, 012094, DOI: 10.1088/1755-1315/859/1/012094.
 
32.
Hussain et al. 2016 – Hussain, N.H., Hashim, Z., Hashim, J.H., Ismail, N. and Zakaria, J. 2016. Psychosocial and health impacts of bauxite mining among felda bukit goh communities in Kuantan, Malaysia. International Journal of Public Health and Clinical Sciences 3, pp. 174–189.
 
33.
Jin et al. 2009 – Jin, Z.G., Wu, G.H., Huang, Z.L., Bao, M. and Zhou, J.X. 2009. The Geochemical Chareacteristics of Wachangping Bauxite Deposite in Wuchuan County, Guizhou Province, China. Acta Mineralogica Sinica 29, pp. 458–462 (in Chinese).
 
34.
Jin et al. 2015 – Jin, Z.G., Zhou, J.X., Huang, Z.L., Dai, L.S., Xie, X., Peng, S. and Gu, J. 2015. The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng’an-Daozhen bauxite ore district, northern Guizhou Province. Geology in China 42, pp. 1910–1918 (in Chinese).
 
35.
Kasliwal, P. and Sai, P. 1999. Enrichment of titanium dioxide in red mud: a kinetic study. Hydrometallurgy 53, pp. 73–87, DOI: 10.1016/S0304-386X(99)00034-1.
 
36.
Klauber et al. 2011 – Klauber, C., Gräfe, M. and Power, G. 2011. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 108, pp. 11–32, DOI: 10.1016/j.hydromet.2011.02.007.
 
37.
Kochian et al. 2004 – Kochian, L.V., Hoekenga, O.A. and Pineros, M.A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol. 55, pp. 459–93, DOI: 10.1146/annurev.arplant.55.031903.141655.
 
38.
Kong et al. 2017 – Kong, X.F., Li, M., Xue, S.G., Hartley, W., Chen, C.R., Wu, C., Li, X.F. and Li, Y.W. 2017. Acid transformation of bauxite residue: conversion of its alkaline characteristics. Journal of Hazardous Materials 324, pp. 382–390, DOI: 10.1016/j.jhazmat.2016.10.073.
 
39.
Lad, R.J. and Samant, J.S. 2015. Impact of bauxite mining on soil: a case study of bauxite mines at Udgiri, Dist-Kolhapur, Maharashtra State, India. International Research Journal of Environment Sciences 4, pp. 77–83.
 
40.
Lad, R.J. and Samant, J.S. 2012. Studies On The Impact Of Bauxite Mining Activities On Environment In Kolhapur District. Proceeding of International Conference SWRDM, 2012, pp. 188–192.
 
41.
Lee et al. 2017 – Lee, K.Y., Ho, L.Y., Tan, K.H., Tham, Y.Y., Ling, S.P., Qureshi, A.M., Ponnudurai, T., Nordin, R. 2017. Environmental and occupational health impact of bauxite mining in Malaysia: a review. IIUM Medical Journal Malaysia 16, pp. 137–150.
 
42.
Lei et al. 2013 – Lei, Z.Y., Weng, S.F., Chen, Q., Xiong, X., Pan, Z.H., He, X.L. and Chen, H. 2013. Lithofacies paleogeography of the Dazhuyuan Age,Early Permian in the Wuchuan-Zheng’an-Daozhen area, northern Guizhou Province and its implication for bauxitisation. Geological Science and Technology Information 32, pp. 8–12 (in Chinese).
 
43.
Liao et al. 2019 – Liao, S.Z., Yang, J.L. and Ma, S.J. 2019. Research Progress in the Comprehensive Utilization of Red Mud. Conservation and Utilization of Mineral Resources 39, pp. 21–27 (in Chinese).
 
44.
Li et al. 2014 – Li, J.W., Zhang, J.B. and Li, Q.M. 2014. Recovery of Iron From Bayer Red Mud. Hydrometallurgy of China 33, pp. 185–187 (in Chinese).
 
45.
Li et al. 2014 – Li, Y.T., Xiao, J.F., Fu, S.H. and Zhao, Z.J. 2014. The comparison study on metallogenic characteristics of the main bauxite-deposit-clustered areas in Guizhou province. Contributions to Geology and Mineral Resources Research 29, pp. 489–494 (in Chinese).
 
46.
Li et al. 2020 – Li, G., Koomson, D.A., Huang, J., Amponsah, E.I., Darkwah, W.K., Miwornunyuie, N., Li, K. and Dong, X. 2020. A review from environmental management to environmental governance: paradigm shift for sustainable mining practice in Ghana. Environment, Development and Sustainability 23, pp. 9710–9724, DOI: 10.1007/s10668-020-01050-z.
 
47.
Lim, B.K. 2009. Environmental assessment at the Bakhuis Bauxite Concession: small-sized mammal diversity and abundance in the lowland humid forests of Suriname. The Open Biology Journal 2, pp. 42–53, DOI: 10.2174/1874196700902010042.
 
48.
Ling et al. 2015 – Ling, K., Zhu, X., Tang, H., Wang, Z., Yan, H., Han, T. and Chen, W. 2015. Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geology Reviews 65, pp. 84–96, DOI: 10.1016/j.oregeorev.2014.09.003.
 
49.
Liu, P. 1994. Discussion On the Bauxite in Guizhou Province – Ⅳ:Patterns of Rare Elements and Rare Earth Elements in Bauxite in Mineralization Belts from the Central Guizhou to the Southern Sichuan. Guizhou Geology 11, pp. 179–187 (in Chinese).
 
50.
Liu, P. 1999. Gechemical characteristics of Carboniferous Bauxite Deposits in Central Guizhou-southern Sichuan. Regional Geology of China 18, pp. 99–106 (in Chinese).
 
51.
Liu, Z.B. and Li, H.X. 2015. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 29–43, DOI: 10.1016/j.hydromet.2015.03.018.
 
52.
Liu et al. 2019 – Liu, P., Liao, Y.C., Han, Z.H. and Nie, K. 2019. Geochemical Characteristics of REE in Ore-bearing Rock Series of Central Guizhou and South Chongqing. Guizhou Geology 36, pp. 1–9 (in Chinese).
 
53.
Liu et al. 2019 – Liu, Q.L., Jin, X.Q., Yang, Y.J., Liu, J. and Zhang, J.F. 2019. Research progress on application of red mud in environmental remediation. Environmental Protection and Technology 25, pp. 56–60 (in Chinese).
 
54.
Liu et al. 2016 – Liu, Y.P., Cheng, G.F., Zhou, W.L. and Cui, T. 2016. Division of Bauxite Mineralization Area(Belt) in Guizhou Province. Geological Science and Technology Information 35, pp. 128–132 (in Chinese).
 
55.
Luo et al. 2022 – Luo, C., Yang, R., Chen, J., Gao, L., Xu, H. and Ni, X. 2022. Genesis of the Carboniferous karstic bauxites in Qingzhen region, central Guizhou, southwest China. Journal of Geochemical Exploration 235, DOI: 10.1016/j.gexplo.2022.106955.
 
56.
Marabini et al. 1998 – Marabini, A.M., Plescia, P., Maccari, D., Burragato, F., Pelino, M. 1998. New materials from industrial and mining wastes: glass-ceramics and glass-and rock-wool fibre. International Journal of Mineral Processing 53, pp. 121–134.
 
57.
Mayes et al. 2011 – Mayes, W.M., Jarvis, A.P., Burke, I.T., Walton, M., Feigl, V., Klebercz, O. and Gruiz, K. 2011. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science & Technology 45, pp. 5147–5155, DOI: 10.1021/es200850y.
 
58.
MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). 2021. Announcement on the emission coefficient and material balance method for calculating taxable pollutant emissions from environmental protection. [Online:] https://www.mee.gov.cn/xxgk201....
 
59.
Miao et al. 2011 – Miao, L., Ji, G., Gao, G., Li, G. and Gan, S. 2011. Extraction of alumina powders from the oil shale ash by hydrometallurgical technology. Powder Technology 207, pp. 343–347, DOI: 10.1016/j.powtec.2010.11.017.
 
60.
Mišík et al. 2014 – Mišík, M., Burke, I.T., Reismüller, M., Pichler, C., Rainer, B., Mišíková, K., Mayes, W.M. and Knasmueller, S. 2014. Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Science of the Total Environment 493, pp. 883–890.
 
61.
MNRPRC (Ministry of Natural Resources of the People’s Republic of China). 2020. Letter on the issuance of “Green Mine Evaluation Indexes” and “third Party Evaluation requirements for Green Mine selection”. [Online:] http://gi.mnr.gov.cn/202006/t2.... 2020.6.1 [Accessed: 2022-01-01].
 
62.
MNRPRC (Ministry of Natural Resources of the People’s Republic of China). 2018. Announcement on the publication of 9 industry standards, including the Code for the Construction of Green Mines in non-metallic Mining Industry. [Online:] http://www.mnr.gov.cn/gk/tzgg/.... 2018.6.22. [Accessed: 2022-01-01].
 
63.
Nagy et al. 2013 – Nagy, A.S., Szabó, J. and Vass, I. 2013. Trace metal and metalloid levels in surface water of Marcal River before and after the Ajka red mud spill, Hungary. Environmental Science and Pollution Research 20, pp. 7603–7614, DOI: 10.1007/s11356-013-2071-5.
 
64.
Nayak, P. 2002. Aluminum: impacts and disease. Environmental Research 89(2), pp. 101–15, DOI: 10.1006/enrs.2002.4352.
 
65.
Nurmi, P. and Wiklund, M.L. 2012. Finland is developing Green Mining. Geosciences 15, pp. 36–45.
 
66.
Ochsenkühn-Petropulu et al. 1996 – Ochsenkühn-Petropulu, M., Lyberopulu, T., Ochsenkühn, K.M. and Parissakis, G. 1996. Recovery of lanthanides and yttrium from red mud by selective leaching. Analytica Chimica Acta 319, pp. 249–254.
 
67.
Panwar, N. and Chauhan, A. 2018. Optimizing the effect of reinforcement, particle size and aging on impact strength for Al 6061-red mud composite using Taguchi technique. Sādhanā 43, pp. 1–10, DOI: 10.1007/s12046-018-0870-6.
 
68.
Peng et al. 2007 – Peng, J., Cai, Y.L., He, G., Wang, W.B., Huang, Q.H. and Yan, F. 2007. Land Use/cover Change in Ecologically Fragile Kast Areas – A Case Study in Maotiaohe River Basin, Guizhou China. Mountain Research 25, pp. 566–576 (in Chinese).
 
69.
Pekka, N. 2017. Green Mining – A Holistic Concept for Sustainable and Acceptable Mineral Production. Annals of Geophysics 60, DOI: 10.4401/ag-7420.
 
70.
Pontikes, Y. and Angelopoulos, G.N. 2013. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling 73, pp. 53–63, DOI: 10.1016/j.resconrec.2013.01.005.
 
71.
Qian et al. 2017 – Qian, D., Yan, C., Xing, Z. and Xiu, L. 2017. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: a case study of the Muli coal mine in the Qinghai-Tibet Plateau. Environmental Monitoring and Assessment 189, pp. 1–13, DOI: 10.1007/s10661-017-6284-9.
 
72.
Qu, Y. and Lian, B. 2013. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136, pp. 16–23, DOI: 10.1016/j.biortech.2013.03.070.
 
73.
Rao et al. 2016 – Rao, M.J., Prasad, C.H., Mohammad, M. and Kakkassery, A.I. 2016. Bauxite mining in eastern ghats of Andhra Pradesh, possible environmental implications and measures for environmentally friendly mining. International Journal of Science and Research 5, pp. 1434–1437.
 
74.
Ro et al. 2020 – Ro, S., Yan, D. and Kim, S. 2020. Green mining policy for environmental protection and sustainable development. IOP Conference Series: Earth and Environmental Science 474, 022024.
 
75.
Ruyters et al. 2011 – Ruyters, S., Mertens, J., Vassilieva, E., Dehandschutter, B., Poffijn, A. and Smolders, E. 2011. The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environmental Science & Technology 45, pp. 1616–1622, DOI: 10.1021/es104000m.
 
76.
Shan, S.X. 2011. The status and development of electrolytic aluminium industry in China. Light Metals 3–8 (in Chinese).
 
77.
Shi, H. 2012. Mine Green Mining. Energy Procedia 16, pp. 409–416, DOI: 10.1016/j.egypro.2012.01.067.
 
78.
Sijinkumar et al. 2014 – Sijinkumar, A.V., Sandeep, K., Shinu, N., Megha, V., Shyamini, C., Sreeni, K.R. and Suvarna, K. 2014. A preliminary assessment of environmental impacts due to bauxite and laterite mining in Karindalam and Kinanur, Southern India. International Journal of Conservation Science 5, pp. 235–242.
 
79.
Sinha et al. 2014 – Sinha, S., Sinha, M.K. and Pandey, B.D. 2014. Extraction of lanthanum and cerium from Indian red mud. International Journal of Mineral Processing 127, pp. 70–73, DOI: 10.1016/j.minpro.2013.12.009.
 
80.
Smirnov, D.I. and Molchanova, T.V. 1997. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy 45, pp. 249–259, DOI: 10.1007/s12598-016-0805-5.
 
81.
Sun, D.X. 2008. Dealkalization and reclaiming valuable Ti and Sc from red mud. Inorganic Chemicals Industry 40, pp. 49–52 (in Chinese).
 
82.
Sun et al. 2015 – Sun, L., Dong, W.M. and Liu, Y.H. 2015. The current situation and future development of aluminum industry in China. Light Metals 1–6 (in Chinese).
 
83.
Tang et al. 2018 – Tang, W.C., Wang, Z., Liu, Y. and Cui, H.Z. 2018. Influence of red mud on fresh and hardened properties of self-compacting concrete. Construction and Building Materials 178, pp. 288–300.
 
84.
Tian et al. 2019 – Tian, S., Liang, T. and Li, K. 2019. Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environment International 128, pp. 201–209, DOI: 10.1016/j.envint.2019.04.050.
 
85.
Toniolo et al. 2018 – Toniolo, N., Rincón, A., Avadhut, Y.S., Hartmann, M., Bernardo, E. and Boccaccini, A.R. 2018. Novel geopolymers incorporating red mud and waste glass cullet. Materials Letters 219, pp. 152–154, DOI: 10.1016/j.matlet.2018.02.061.
 
86.
Tuokuu et al. 2018 – Tuokuu, F.X.D., Gruber, J.S., Idemudia, U. and Kayira, J. 2018. Challenges and opportunities of environmental policy implementation: Empirical evidence from Ghana’s gold mining sector. Resources Policy 59, pp. 435–445, DOI: 10.1016/j.resourpol.2018.08.014.
 
87.
Wang, S. 2005. The research on the mining problems from mining right system perspective. China Mining Magazine 04, pp. 24–27 (in Chinese).
 
88.
Wang et al. 2001 – Wang, Q.X., Zhang, K.R., Chen, G.M. and Yuan, Z.Y. 2001. Countermeasures for Bauxite Resources’ Exploitation and Conservation in China. Conservation and Utilization of Mineral Resources 49–54 (in Chinese).
 
89.
Wang et al. 2013 – Wang, W., Pranolo, Y. and Cheng, C.Y. 2013. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Separation and Purification Technology 108, pp. 96–102, DOI: 10.1016/j.seppur.2013.02.001.
 
90.
Wang et al. 2018a – Wang, R., Wang, Q., Huang, Y., Yang, S., Liu, X. and Zhou, Q. 2018a. Combined tectonic and paleogeographic controls on the genesis of bauxite in the Early Carboniferous to Permian Central Yangtze Island. Ore Geology Review, 101, pp. 468–480, DOI: 10.1016/j.oregeorev.2022.104862.
 
91.
Wang et al. 2018b – Wang, Y.X., Zhang, T.A., Lyu, G.Z., Guo, F.F., Zhang, W.G. and Zhang, Y.H. 2018b. Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. Journal of Cleaner Production 188, pp. 456–465, DOI: 10.1016/j.jclepro.2018.04.009.
 
92.
Wei et al. 2019 – Wei, H.S., Ma, X.E., Guan, X.M., Zhang, W.G., Huang, A. and Li, S.H. 2019. Preparation of Bayer Red Mud Light – weight Thermal Insulation Ceramics. Bulletin of the Chinese Ceramic Society 38, 749–751+761 (in Chinese).
 
93.
Winkler, D. 2014. Collembolan response to red mud pollution in Western Hungary. Applied Soil Ecology 83, pp. 219–229, DOI: 10.1016/j.apsoil.2013.07.006.
 
94.
Wu et al. 2010 – Wu, J.N., Wan, H.Y., Chen, W.Q. and Shi, L. 2010. Quantifying energy consumption and greenhouse gas emissions of the primary aluminum industry in China. Journal of Tsinghua University (Science and Technology) 50, pp. 407–410 (in Chinese).
 
95.
Xiang, X.L. 2014. Metallogenic laws and prospecting of bauxite in the Wuchuen-Zheng’ an-Daozheng area, Northern Guizhou Province, China. Doctorate, Kunming University of Science and Technology. Kunming (in Chinese).
 
96.
Xiao et al. 2021 – Xiao, J., Li, Y., Yang, H., Xu, J. and Huang, M. 2021. Geochemistry of the Yudong bauxite deposit, south-eastern Guizhou, China: Implications for conditions of formation and parental affinity. Journal of Geochemical Exploration 220, DOI: 10.1016/j.gexplo.2020.106676.
 
97.
Xing, Z.Y. 2020. Treatment and utilization of pollutants produced in alumina production. World Nonferrous Metals 5, pp. 16–17 (in Chinese).
 
98.
Xu et al. 2018 – Xu, L., Luo, Y.Z. and Shi, G.D. 2018. Scandium Pre-enrichment from Red Mud Sulfuric Acid Curing Leaching Solution. Nonferrous Metals (Extractive Metallurgy) 39–41 (in Chinese).
 
99.
Xu et al. 2021 – Xu, W., Wang, J., Zhang, M. and Li, S. 2021. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. Journal of Cleaner Production, 286, DOI: 10.1016/j.jclepro.2020.125523.
 
100.
Xue et al. 2016 – Xue, S.G., Kong, X.F., Zhu, F., Hartley, W., Li, X.F. and Li, Y.W. 2016. Proposal for management and alkalinity transformation of bauxite residue in China. Environ Sci Pollut Res Int. 23, pp. 12822–12834, DOI: 10.1007/s11356-016-6478-7.
 
101.
Xue et al. 2017 – Xue, S.G., Li, Y.B. and Guo, Y. 2017. Environmental impact of bauxite residue: a comprehensive review. Journal of University of Chinese Academy of Sciences 34, pp. 401–412 (in Chinese).
 
102.
Yang, J.K. and Xiao, B. 2008. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process. Construction and Building Materials 22, pp. 2299–2307, DOI: 10.1016/j.conbuildmat.2007.10.005.
 
103.
Yang et al. 2008 – Yang, S.Y., Zhang, J.J., Zhao, G.X., Pei, Y.W., Yang, S.L., Li, Z.F., Wang, L., Xie, X.N., Wang, S.X. and Yang, X.Z. 2008. Environmental Geology of Guizhou Province, China. Guiyang: Guizhou Science and Technology Publishing House, pp. 129–130 (in Chinese).
 
104.
Yang et al. 2018 – Yang, R.D., Gao, J.B., Zhao, K., Yu, J.L., Zhu, C.L., Gao, L., Chen, J.Y. and Zhou, R.X. 2018. Roof and Floor Characteristics of Bauxite in Qingzhen, Guizhou, and their Implications for Bauxite Mineralization. Acta Geologica Sinica, 92, pp. 2155–2165 (in Chinese).
 
105.
Yin et al. 2010 – Yin, N.X., Luo, W. and Wang, S.Y. 2010. Environmental Geological Survey and Evaluation report of Bauxite Mine in Xiuwen-Qingzhen. Guiyang: Guizhou Geological Environment Monitoring Institute (in Chinese).
 
106.
Zhang, J.J. 2003. Preliminary study recovery titanium dioxide from red mud of industrial slag. China Resource Comprehensive Utilization 28–30 (in Chinese).
 
107.
Zhang et al. 2012 – Zhang, Z., Li, Y., Zhou, L. and Wu, C. 2012. Coal-Bauxite-Iron Structure and Geochemical Features of Bauxites Ore-Beaing Rock Series in Southeast Guizhou. Acta Geologica Sinica 86, pp. 1119–1131 (in Chinese).
 
108.
Zhang et al. 2017 – Zhang, N.N., Zhou, C.C., Liu, C., Pan, J.H., Tang, M.C., Cao, S.S., Ouyang, C.H. and Peng, C.B. 2017. Effects of particle size on flotation parameters in the separation of diaspore and kaolinite. Powder Technology 317, pp. 253–263, DOI: 10.1016/j.powtec.2017.04.049.
 
109.
Zhang et al. 2018 – Zhang, N.N., Nguyen, A.V. and Zhou, C.C. 2018. Impact of interfacial Al- and Si-active sites on the electrokinetic properties, surfactant adsorption and floatability of diaspore and kaolinite minerals. Minerals Engineering 122, pp. 258–266, DOI: 10.1016/j.mineng.2018.04.002.
 
110.
Zhang et al. 2020a – Zhang, M., Wang, J., Li, S., Feng, D. and Cao, E. 2020a. Dynamic changes in landscape pattern in a large-scale opencast coal mine area from 1986 to 2015: A complex network approach. Catena 194, DOI: 10.1016/j.catena.2020.104738.
 
111.
Zhang et al. 2020b – Zhang, D.R., Chen, H.R., Nie, Z.Y., Xia, J.L., Li, E.P., Fan, X.L. and Zheng, L. 2020b. Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching. Chemical Engineering Journal 401, DOI: 10.1016/j.cej.2020.125914.
 
112.
Zhou et al. 2008 – Zhou, Q.S., Fan, K.S., Li, X.B., Peng, Z.H. and Liu, G.H. 2008. Alumina recovery from red mud with high iron by sintering process. Journal of Central South University (Science and Technology) 39, pp. 92–97 (in Chinese).
 
113.
Zhou et al. 2016 – Zhou, W.L. and Liu, Y.P. 2016. Characteristics of Basement Strata in Bauxite Deposits of Guizhou Province and Their Relationships to Regional Mineralization. Geology and Exploration 52, pp. 462–471 (in Chinese).
 
114.
Zhu et al. 2012 – Zhu, D.Q., Chun, T.J., Pan, J. and He, Z. 2012. Recovery of Iron From High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt. Journal of Iron and Steel Research International 19, pp. 1–5, DOI: 10.1016/S1006-706X(12)60131-9.
 
115.
Zhu et al. 2015 – Zhu, X.B., Guan, X.M. and Li, W. 2015. Experimental Research on Titanium Recovery from Red Mud by Acid Leaching. Rare Metals and Cemented Carbides 43, pp. 11–13+49 (in Chinese).
 
116.
Zong et al. 2018 – Zong, Y.B., Chen, W.H., Fan, Y., Yang, T.L., Liu, Z.B. and Cang, D.Q. 2018. Complementation in the composition of steel slag and red mud for preparation of novel ceramics. International Journal of Minerals, Metallurgy, and Materials 25, pp. 1010–1017, DOI: 10.1007/s12613-018-1651-2.
 
eISSN:2299-2324
ISSN:0860-0953