REVIEW PAPER
Foundry waste as a raw material for agrotechnical applications
More details
Hide details
1
Opole University of Technology
Submission date: 2021-07-30
Final revision date: 2021-10-08
Acceptance date: 2021-11-12
Publication date: 2021-12-22
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2021;37(4):117-132
KEYWORDS
TOPICS
ABSTRACT
This paper discusses the agrotechnical use of foundry waste based on spent foundry sands (SFS). The advantage of foundry waste use is its high concentration of quartz sands and its similar physical properties to soils, including good permeability and filtration rate. An important component of foundry waste containing a mineral binders (green sands) is the presence of a clay fraction. In contrast, organic binders in some foundry wastes increase the percentage of organic matter. However, organic binders may contain toxic substances that are hazardous to the biota. Therefore, it is not recommended to use foundry waste with organic binders in agriculture or horticulture. Moreover, heavy metals may be problematic in the agrotechnical use of foundry waste mainly derived from cast metal. The disadvantage of using foundry waste as soil substrates is the low proportion of fertilizing components. Due to the low content of nutrients in foundry waste, it is recommended that it is used as a structural component mixed with other additives, such as sewage sludge or compost. The paper presents the results of research on the content of pollutants and the assessment of the biotoxicity of foundry waste. Based on the analyzed literature reports and own research, it was found that the use of foundry waste for non-industrial purposes, such as the production of artificial horticultural substrates, soilless substrates and artificial soils (Technosols), should be preceded by numerous studies to confirm the absence of negative impacts on the environment and human health.
ACKNOWLEDGEMENTS
This study was supported by Opole University of Technology from funds for statutory research.
METADATA IN OTHER LANGUAGES:
Polish
Odpady odlewnicze jako surowiec do zastosowań agrotechnicznych
odlewnie, odpady, rolnictwo, Technosol, metale ciężkie
W pracy przedstawiono agrotechniczne wykorzystanie odpadów odlewniczych na bazie zużytych piasków formierskich (SFS). Zaletą wykorzystania odpadów odlewniczych jest wysoka zawartość piasków kwarcowych i zbliżone właściwości fizyczne do gleb, w tym dobra przepuszczalność i współczynnik filtracji. Ważnym składnikiem odpadów odlewniczych zawierających spoiwa mineralne (green sands) jest obecność frakcji ilastej. Poza tym spoiwa organiczne obecne w niektórych odpadach odlewniczych zwiększają udział materii organicznej. Spoiwa organiczne mogą jednak zawierać substancje toksyczne, które są niebezpieczne dla organzimów żywych. Dlatego nie zaleca się wykorzystywania odpadów odlewniczych zawierających spoiwa organiczne w rolnictwie lub ogrodnictwie. Ponadto metale ciężkie mogą stanowić problem w agrotechnicznym wykorzystaniu odpadów odlewniczych, pochodzących głównie z odlewów. Wadą stosowania odpadów odlewniczych jako podłoża glebowego jest niski udział składników nawozowych. Z tego powodu zaleca się stosowanie ich jako składnik konstrukcyjny, po zmieszaniu z innymi dodatkami takimi jak osady ściekowe czy kompost. W pracy przedstawiono wyniki badań zawartości zanieczyszczeń oraz oceny biotoksyczności odpadów odlewniczych. Na podstawie przeanalizowanych doniesień literaturowych oraz badań własnych stwierdzono, że wykorzystanie odpadów odlewniczych do celów nieprzemysłowych, takich jak produkcja sztucznych podłoży ogrodniczych, podłoży bezglebowych i gleb sztucznych (Technosols), powinno być poprzedzone licznymi badaniami, które potwierdzą brak negatywnego wpływu na środowisko i zdrowie ludzi.
REFERENCES (49)
1.
Alves et al. 2014 – Alves, B.S.Q., Dungan, R.S., Carnin, R.L.P., Galvez, R. and de Carvalho Pinto, C.R.S. 2014. Metals in waste foundry sands and an evaluation of their leaching and transport to groundwater. Water Air and Soil Pollution 225, pp. 1–11. DOI: 10.1007/s11270-014-1963-4.
2.
Bastian, K.C. and Alleman, J.E. 1998. Microtox characterization of foundry sand residuals. Waste Management 18, pp. 227–234.
3.
Benzel, T. 1998. Topsoil replacements: foundry sand & papermill sludge recycling. [In:] Lindsay B.J. and Logan T.J. 2005. Agricultural Reuse of Foundry Sand. Review. Journal of Residuals Science & Technology 2(1), pp. 3–12.
4.
Bożym, M. 2017. The study of heavy metals leaching from waste foundry sands using a one–step extraction. E3S Web of Conferences 19, pp. 1–6. DOI: 10.1051/e3sconf/20171902018.
5.
Bożym, M. 2018. Alternative directions for the use of foundry waste, especially for energy management (Alternatywne kierunki wykorzystania odpadów odlewniczych ze szczególnym uwzględnieniem energetycznego zagospodarowania). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk nr 105, pp. 197–212. DOI: 10.24425/124358 (in Polish).
6.
Bożym, M. 2019. Assessment of leaching of heavy metals from the landfilled foundry waste during exploitation of the heaps. Polish Journal Environmental Studies 28(6), pp. 4117–4126. DOI: 10.15244/pjoes/99240.
7.
Bożym, M. 2020. Assessment of phytotoxicity of leachates from landfilled waste and dust from foundry, Ecotoxicology. DOI: 10.1007/s10646-020-02197-1.
8.
Bożym, M. and Klojzy-Karczmarczyk, B. 2020. The content of heavy metals in foundry dusts as one of the criteria for assessing their economic reuse, Gospodarka surowcami mineralnymi – Mineral Resources Management, 36(3), pp. 111–126. DOI: /10.24425/gsm.2020.133937.
9.
Bożym, M. and Klojzy-Karczmarczyk, B. 2021. Assessment of the mercury contamination of landfilled and recovered foundry waste – a case study. Open Chemistry 19, pp. 462–470. DOI: 10.1515/chem-2021-0043.
10.
Camps Arbestain et al. 2008 – Camps Arbestain, M., Madinabeitia, Z., Anza Hortala, M., Macias-Garcia, F., Virgel, S. and Macias, F. 2008. Extractability and leachability of heavy metals in Technosols prepared from mixtures of unconsolidated wastes. Waste Management 28, pp. 2653–2666.
11.
Carlsson, R. and Nayström P. 2016. Solid waste. Sand re–use from Swedish Metal Casting. Procedia Environmental Sciences 35, pp. 624 – 628.
12.
Carnina et al. 2012 – Carnina, R.L.P, Folgueras, M.V., Luvizão, R.R., Correia, S.L., da Cunhac, C.J. and Dungan, R.S. 2012. Use of an integrated approach to characterize the physicochemical properties of foundry green sands. Thermochimica Acta 543, pp. 150–155.
13.
Dayton et al. 2010 – Dayton, E.A., Whitacre, S.D., Dungan, R.S. and Basta, N.T. 2010. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and Soil 329, pp. 27–33. DOI: 10.1007/s11104-009-0120-0.
14.
Deng, A. 2009. Contaminants in waste foundry sand and its leachate. Internatinal Jounal of Environment and Pollution 38(4), pp.425 – 443. DOI: 10.1504/IJEP.2009.027274.
15.
Díaz Pace et al. 2017 – Díaz Pace, D.M., Miguel R.E., Di Rocco, H.O., Anabitarte García, F., Pardini, L., Legnaioli, S., Lorenzetti, G. and Palleschi, V. 2017. Quantitative analysis of metals in waste foundry sands by calibration free–laser induced breakdown spectroscopy. Spectrochimica Acta Part B 131, pp. 58–65.
16.
Dungan et al. 2006 – Dungan, R.S., Kukier, U. and Lee, B. 2006. Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment 357, pp. 221– 230. DOI: 10.1016/j.scitotenv.2005.04.032.
17.
Dungan et al. 2007 – Dungan, R.S., Lee, B.D., Shouse, P. and De Koff, J.P. 2007. Saturated hydraulic conductivity of soils blended with waste foundry sands. Soil Science 10, pp.751–758.
18.
Dungan et al. 2009 – Dungan, R.S., Kim, J.S., Weon, H.Y. and Leytem, A.B. 2009. The characterization and composition of bacterial communities in soils blended with spent foundry sand. Annals of Microbiology 59(2), pp. 239–246. DOI: 10.1007/BF03178323.
19.
Dungan, R.S. 2008. The Characterization of trace metals and organics in spent foundry sands over a one–year period. Journal of Residuals Science & Technology 5(3), pp. 111–125.
20.
Dungan, R.S. and Dees, N.H. 2009. The characterization of total and leachable metals in foundry molding sands. Journal of Environmental Management 90, pp. 539–548. DOI: 10.1016/j.jenvman.2007.12.004.
21.
Dungan, R.S. and Dees, N.H. 2007. Use of spinach, radish, and perennial ryegrass to assess the availability of metals in waste foundry sands. Water Air Soil Pollution 183, pp. 213–223. DOI: 10.1007/s11270-007-9370-8.
22.
Dunkelberger, J.A. and Regan Sr. R.W. 1997. Evaluation of spent foundry sand as a growing mix amendment: potential beneficial use option. Transactions American foundrymen’s Society 105, pp. 305–316.
23.
EPA Report 2002 – Beneficial reuse of foundry sand: a review of state practices and regulations. Sector Strategies Division. Office of Policy, Economics, and Innovation. U.S. Environmental Protection Agency. Washington, DC. December 2002. [Online:]
https://nepis.epa.gov/ [Accessed: 2021-07-20].
24.
EPA Report 2014 – Risk assessment of spent foundry sands in soil–related applications. evaluating silica–based spent foundry sand from iron, steel, and aluminum foundries. EPA-530-R-14-003. October 2014. [Online:]
https://www.epa.gov/ [Accessed: 2021-07-20].
25.
EU 2006 – Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection plus Summary of the Impact Assessment. COM 231 (2006) final. Brussels, 12 + 8 pp.
26.
Javed, S. and Lovell, C. 1994. Use of waste foundry sand in highway construction, Report JHRP/INDOT/FHWA–94/2J Final Report, Purdue School of Engineering.
27.
Ji et al. 2001 – Ji, S., Wan, L. and Fan, Z. 2001. The toxic compounds and leaching characteristics of spent foundry sands. Water Air and Soil Pollution 132, pp. 347–64.
28.
Journal of Laws 2015 – Regulation of the Minister of Economy of 16 July 2015 on allowing waste to be stored in landfills (Journal of Law 2015, item. 1277).
29.
Kicińska, A. 2021. Physical and chemical characteristics of slag produced during Pb refining and the environmental risk associated with the storage of slag. Environmental Geochemistry and Health 43, pp. 2723–2741.
30.
Kim, K.R. and Owens, G. 2010. Potential for enhanced phytoremediation of landfills using biosolids – a review. Journal of Environmental Management 91, pp. 791–797.
31.
Klojzy-Karczmarczyk et al. 2021 – Klojzy-Karczmarczyk, B., Mazurek, J. and Staszczak, J. 2021. Leaching of metals from asbestos-containing products used for roofing. Gospodarka surowcami mineralnymi – Mineral Resources Management 37(3), pp. 111–124. DOI: 10.24425/gsm.2021.138662.
33.
Lindsay, B.J. and Logan, T.J. 2009. Agricultural Reuse of Foundry Sand. Review. Journal of Residuals Science & Technology 2(1), pp. 3–12.
34.
Logan, T.J. and Lindsay, B.J. 2001. Assessment of food–chain risk from GM Powertrain exempt foundry sand (SFS) used in blended topsoil. Report, SNR, Ohio State Univ., USA.
35.
McCoy, E.L. 1998. Sand and organic amendment influences on soil physical properties related to turf establishment. Agronomy Journal 90, pp. 411–419.
36.
Miguel et al. 2012 – Miguel, R.E., Ippolito, J.A., Leytem, A.B., Porta, A.A., Noriega, R.B.B. and Dungan, R.S. 2012. Analysis of total metals in waste molding and core sands from ferrous and non–ferrous foundries. Journal of Environmental Management 110, pp. 77–81.
37.
Miguel et al. 2014 – Miguel, R.E., Dungan, R.S. and Reeves III J.B. 2014. Mid–infrared spectroscopic analysis of chemically bound metalcasting sands. Journal of Analytical and Applied Pyrolysis 107, pp. 332–335.
38.
Modern Casting 2017 – 51th Modern Casting Production. Census of World Casting Production, December 2017, pp. 24–28.
39.
Naik et al. 2001 – Naik, T.R., Singh, S.S. and Ramme, W.B. 2001. Performance and leaching assessment of flowable slurry. Journal of Environmental Engineering 127(4), pp. 359–368.
40.
Oliveira et al. 2011 – Oliveira, P.E.F., Oliveira, L.D., Ardisson, J.D. and Lago, R.M. 2011. Potential of modified iron–rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction, Journal of Hazardous Materials 194, pp. 393–398.
41.
Polish Monitor 2016 – Resolution No.88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022 (Polish Monitor 784, 2016).
42.
Royle et al. 2000 – Royle, S.M., Chambers, B.J., Hadden, S.W. and Maslen, S. 2000. Proc. Waste 2000, Waste management at the dawn of the third millennium. Making soil from waste materials. [In:] Lindsay B.J. and Logan T.J. 2005. Agricultural Reuse of Foundry Sand. Review. Journal of Residuals Science & Technology 2(1), pp. 3–12.
43.
Salihoglu, G. and Pinarli, V. 2008. Steel foundry electric arc furnace dust management: Stabilization by using lime and Portland cement. Journal of Hazardous Materials 153, pp. 1110–1116.
44.
Siddique et al. 2010 – Siddique, R., Kaur, G. and Rajor, A. 2010. Waste foundry sand and its leachate characteristics. Resources, Conservation and Recycling 54, pp. 1027–1036. DOI: 10.1016/j.resconrec.2010.04.006.
45.
Sorvari, J. and Wahlstrom, M. 2014. Industrial By–products. Chapter 17. Part II. Recycling. Application & Technology. Handbook of Recycling, Elsevier, pp. 231–253. DOI: 10.1016/B978-0-12-396459-5.00017-9.
47.
Waste catalog 2020 – Regulation of the Minister of Climate of 2 January 2020 on the waste catalog (Journal of Law 2020, item 10).
48.
Yao et al. 2009 – Yao, F.X., Macías, F., Santesteban, A., Virgel, S., Blanco, F., Jiang, X. and Camps Arbestain, M. 2009. Influence of the acid buffering capacity of different types of Technosols on the chemistry of their leachates. Chemosphere 74, pp. 250–258.
49.
Zhang et al. 2014 – Zhang, H., Su, L., Li, X., Zuo, J., Liu, G. and Wang, Y. 2014. Evaluation of soil microbial toxicity of waste foundry sand for soil–related reuse. Frontiers of Environmental Science and Engineering 8(1), pp. 89–98.