ORIGINAL PAPER
The assessment of heavy metal binding forms in foundry wastes used as raw materials in agrotechnics, construction and road construction
More details
Hide details
1
Opole University of Technology
Submission date: 2022-02-02
Final revision date: 2022-02-27
Acceptance date: 2022-02-28
Publication date: 2022-06-28
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(2):169-189
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to evaluate foundry waste used for various applications in terms of heavy metals quantity of fractions of their binding. The novelty of these studies is the use of speciation procedures to assess the fraction of heavy metals in foundry waste. The two most popular speciation procedures, the Tessier method and the SM&T, and also the TCLP single extraction procedure were used to evaluate the use of foundry waste in agritechnique, road engineering and construction in this research. Additionally, local soils were analyzed and compared to landfill foundry waste (LFW). It was found that LFW may have a negative impact on the natural environment when used for agrotechnological applications due to the increased concentration of mobile and bioavailable fractions (mean 9–18%) of metals. Foundry dusts were characterized by a low percentage of mobile and bioavailable (mean 2–6%) forms, although this does not include electric arc fournance dust (EAFD) (mean 17%). The metal content in TCLP extracts was low in all foundry waste samples and allowed the use of the analyzed wastes in construction and road construction. The usefulness of both speciation procedures for the assessment of the leaching of heavy metal forms from foundry waste was confirmed. However, the SM&T procedure was more effective in leaching mobile and bioavailable forms of heavy metals in foundry waste and soil samples.
ACKNOWLEDGEMENTS
This study was supported by Opole University of Technology from funds for statutory research.
METADATA IN OTHER LANGUAGES:
Polish
Ocena form wiĄzania metali ciężkich w odpadach odlewniczych stosowanych jako surowce w agrotechnice, budownictwie i drogownictwie
metale ciężkie, specjacja, odpady odlewnicze, gleby
Celem pracy była ocena zawartości frakcji związania metali ciężkich w odpadach odlewniczych wykorzystywanych do różnych zastosowań. Nowością tych badań jest wykorzystanie procedur specjacyjnych do oceny udziału form metali ciężkich w odpadach odlewniczych. Do badań wykorzystano dwie najpopularniejsze procedury specjacyjne, metodę Tessiera oraz SM&T, a także procedurę jednoetapowej ekstrakcji TCLP, do oceny wykorzystania odpadów odlewniczych w agrotechnice, drogownictwie i budownictwie. Dodatkowo przeanalizowano lokalne gleby i porównano je ze składowanymi odpadami odlewniczymi (LFW). Stwierdzono, że LFW mogą mieć negatywny wpływ na środowisko naturalne podczas zastosowań agrotechnicznych ze względu na zwiększoną koncentrację frakcji mobilnych i biodostępnych (średnio 9–18%) metali. Pyły odlewnicze charakteryzowały się niskim udziałem form mobilnych i biodostępnych (średnio 2–6%), z wyjątkiem pyłu z elektrycznych pieców łukowych (EAFD) (średnio 17%). Zawartość metali w ekstraktach TCLP była niska we wszystkich próbkach odpadów odlewniczych, co pozwala na wykorzystanie analizowanych odpadów w budownictwie i drogownictwie. W pracy potwierdzono przydatność obu procedur specjacyjnych do oceny ługowania form metali ciężkich z odpadów odlewniczych. Jednakże stwierdzono lepszą skuteczność procedury SM&T w zakresie wymywania mobilnych i biodostępnych form metali ciężkich zarówno dla odpadów odlewniczych, jak i gleby.
REFERENCES (63)
1.
Adamo et al. 2002 – Adamo, P., Arienzo, M., Bianco, M.R., Terribile, F. and Violante, P. 2002. Heavy metal contamination of the soil used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy). The Science of the Total Environment 295, pp. 17–34.
2.
Bastian, K.C. and Alleman, J.E. 1998. Microtox characterization of foundry sand residuals. Waste Management 18, pp. 227–234.
3.
Bloom et al. 2003 – Bloom, N.S., Preus, E., Katon, J. and Hiltner, M. 2003. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta 479, pp. 233–248. DOI: 10.1016/S0003-2670(02)01550-7.
4.
Bożym et al. 2009 – Bożym, M., Staszak, D. and Majcherczyk, T. 2009. The influence of waste products from steel foundry dump on heavy metals and radionuclides contaminations in local soils (Badanie zanieczyszczenia metalami ciężkimi i radionuklidami zwałowisk odpadów odlewniczych w Ozimku oraz ich wpływu na stan okolicznych gleb). Prace Instytutu Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych 4, pp. 107–122 (in Polish).
5.
Bożym, M. 2017. The study of heavy metals leaching from waste foundry sands using a one-step extraction. E3S Web of Conferences 19, pp. 1–6. DOI: 10.1051/e3sconf/20171902018.
6.
Bożym, M. 2018. Alternative directions for the use of foundry waste, especially for energy management (Alternatywne kierunki wykorzystania odpadów odlewniczych ze szczególnym uwzględnieniem energetycznego zagospodarowania). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN 105, pp. 197–212, DOI: 10.24425/124358 (in Polish).
7.
Bożym, M. 2019. Assessment of leaching of heavy metals from the landfilled foundry waste during exploitation of the heaps. Polish Journal Environmental Studies 28(6), pp. 4117–4126, DOI: 10.15244/pjoes/99240.
8.
Bożym, M. 2020. Assessment of phytotoxicity of leachates from landfilled waste and dust from foundry. Ecotoxicology, DOI: 10.1007/s10646-020-02197-1.
9.
Bożym, M. 2021. Foundry waste as a raw material for agrotechnical applications. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(4), pp. 117–132, DOI: 10.24425/gsm.2021.139744.
10.
Bożym, M. and Dąbrowska, I. 2012. Directions of foundry waste management [In:] Oszanca K., ed. Problems in environmental protection in the Opolskie Voivodeship – waste and sewage. Atmoterm, pp. 24–41 (in Polish).
11.
Bożym, M. and Klojzy-Karczmarczyk, B. 2020. The content of heavy metals in foundry dusts as one of the criteria for assessing their economic reuse, Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(3), pp. 111–126, DOI: 10.24425/gsm.2020.133937.
12.
Bożym, M. and Klojzy-Karczmarczyk, B. 2021. Assessment of the mercury contamination of landfilled and recovered foundry waste – a case study. Open Chemistry 19, pp. 462–470, DOI: 10.1515/chem-2021-0043.
13.
Bożym, M. and Rajmund, A. 2014. The study of molybdenum leaching from soils fertilized with sewage sludge and their composts (Badanie wymywalności molibdenu z gleb nawożonych osadami ściekowymi i kompostami osadowymi). Chemik 68(10), pp. 874–879 (in Polish).
14.
Bożym, M. and Rajmund, A. 2015. The study of cobalt leaching from soils, sewage sludges and composts using a one-step extraction. Environmental Protection and Natural Resources/Ochrona Środowiska i Zasobów Naturalnych 1(63), pp. 1–6, DOI: 10.1515/oszn-2015-0001.
15.
Bożym, M. and Zalejska, K. 2014. The study of heavy metals leaching from foundry dusts in terms of their impact on the environment (Badanie wymywalności metali ciężkich z pyłów odlewniczych pod kątem ich wpływu na środowisko). Archives of Waste Management and Environmental Protection 16(3), pp. 1–6 (in Polish).
16.
Davranche, M. and Bollinger, J.C. 2000. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: Effect of reductive conditions. Journal of Colloid and Interface Science 227, pp. 531–539, DOI: 10.1006/jcis.2000.6904.
17.
Dayton et al. 2010 – Dayton, E.A., Whitacre, S.D., Dungan, R.S. and Basta, N.T. 2010. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and Soil 329, pp. 27–33, DOI: 10.1007/s11104-009-0120-0.
18.
Dungan et al. 2006 – Dungan, R.S., Kukier, U. and Lee, B. 2006. Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment 357, pp. 221–230, DOI: 10.1016/j.scitotenv.2005.04.032.
19.
Dungan, R.S. and Dees, N.H. 2009. The characterization of total and leachable metals in foundry molding sands. Journal of Environmental Management 90, pp. 539–548, DOI: 10.1016/j.jenvman.2007.12.004.
20.
EPA Report 2014 – Risk Assessment of Spent Foundry Sands In Soil-Related Applications. Evaluating Silica-based Spent Foundry Sand From Iron, Steel, and Aluminum Foundries. EPA–530–R–14–003. October 2014. [Online:]
https://www.epa.gov/.
21.
Fahnline, D.E. and Regan R.W. 1995. Leaching of metals from beneficially used foundry residuals into soils. pp. 339–347. 50th Purdue Industrial Waste Conference Proceedings. Ann Arbor Press Inc., Chelsea, Michigan.
22.
Fernandez Alborez et al. 2000 – Fernandez Alborez, A.F. Perez-Cid, B., Fernandez Gomez, E. and Falque Lopez, E. 2000. Comparsion between sequential extraction procedures and single extraction for metal partitioning in sewage sludge samples. Analyst 125, pp. 1353–1357.
23.
Filipek T. and Domańska J. 2002. Content of total Cd and available form in soils depending on pH and Pb addition (Zawartość Cd ogółem i formy przyswajalnej w glebach w zależności od pH oraz dodatku Pb). Zeszyty Problemowe Postępów Nauk Rolniczych 482, pp. 157–164 (in Polish).
24.
Förstner, U. 1993. Metal speciation – general concepts and applications. International Journal of Environmental Analytical Chemistry 51, pp. 5–23.
25.
Fotyma, M. and Mercik, S. 1995. Agricultural chemistry (Chemia rolna). Warszawa: PWN, pp. 356 (in Polish).
26.
Głosińska et al. 2001 – Głosińska, G., Boszke, L. and Siepak, J. 2001. Evaluation of definitions speciation and speciation analysis in polish publications (Ewaluacja pojęć specjacja i analiza specjacyjna w literaturze polskiej). Chemia i Inżynieria Ekologiczna 8(11), pp. 1109–1119 (in Polish).
27.
Ji et al. 2001 – Ji, S., Wan, L. and Fan, Z. 2001. The toxic compounds and leaching characteristics of spent foundry sands. Water Air and Soil Pollution 132, pp. 347–64.
28.
Journal of Laws 2015 – Regulation of the Minister of Economy of 16 July 2015 on allowing waste to be stored in landfills (Journal of Laws 2015, item. 1277).
29.
Journal of Laws 2016 – Regulation of the Minister of the Environment of September 1, 2016 on the method of assessing the pollution of the earth’s Surface (Journal of Laws 2016, item. 1395).
30.
Kabata-Pendias, A. 2010. Trace elements in soils and plants. Fourth edition CRC Press 2010, DOI: 10.1201/b10158.
31.
Kabata-Pendias, A. and Pendias, H. 1999. Biogeochemistry of trace elements (Biogeochemia pierwiastków śladowych). Warsaw: PWN (in Polish).
32.
Kicińska et al. 2022 – Kicińska, A., Pomykała, R. and Izquierdo-Diaz, M. 2022. Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science 73(1), DOI: 10.1111/ejss.13203.
33.
Kicińska, A. and Gruszecka-Kosowska, A. 2016. Long-term changes of metal contents in two metallophyte species (Olkusz area of Zn-Pb ores, Poland). Environmental Monitoring and Assessment 188(6), pp. 188–339, DOI: 10.1007/s10661-016-5330-3.
34.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2021. The leaching of mercury from hard coal and extractive waste in the acidic medium. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(2), pp. 163–178, DOI: 10.24425/gsm.2021.137567.
35.
Klojzy-Karczmarczyk et al. 2021 – Klojzy-Karczmarczyk, B., Mazurek, J. and Staszczak, J. 2021. Leaching of metals from asbestos-containing products used for roofing. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(3), pp. 111–124, DOI: 10.24425/gsm.2021.138662.
36.
Kumpiene, J. 2010. Trace elements immobilization in soil using amendments [In:] Hooda (ed.). Trace elements in soil, pp. 353–379. John Wiley and Sons, Ltd., United Kingdom.
37.
Laforest, G. and Duchesne, J. 2006. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel. Journal of Hazardous Materials B135, pp. 156–164, DOI: 10.1016/j.jhazmat.2005.11.037.
38.
Lindsay, B.J. and Logan, T.J. 2005. Agricultural reuse of foundry sand. Journal of Residuals Science & Technology 2, pp. 3–12.
39.
Lindsay, B.J. and Logan, T.J. 2009. Agricultural Reuse of Foundry Sand. Review. Journal of Residuals Science & Technology 2(1), pp. 3–12.
40.
Miguel et al. 2014 – Miguel, R.E., Dungan, R.S. and Reeves III J.B. 2014. Mid-infrared spectroscopic analysis of chemically bound metalcasting sands. Journal of Analytical and Applied Pyrolysis 107, pp. 332–335.
41.
Mymrin et al. 2016 – Mymrin, V., Nagalli, A., Catai, R.E., Izzo, R.L.S., Rose, J. and Romano, C.A. 2016. Structure formation processes of composites on the base of hazardous electric arc furnace dust for production of environmentally clean ceramics. Journal of Cleaner Production 137, pp. 888–894. DOI: 101016/jjclepro201607105.
42.
O’Connor et al. 2019 – O’Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F.M.G. and Rinklebe, J. 2019. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International 126, pp. 747–761, DOI: 10.1016/j.envint.2019.03.019.
43.
[Online:] gios.gov.pl [Accessed: 2021-12-12].
44.
O’Reilly, S.E. and Hochella, M.F.J. 2003. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochimica et Cosmochimica Acta 67, pp. 4471–4487, DOI: 10.1016/S0016-7037(03)00413-7.
45.
PN-EN 932–1.2 – Tests of basic properties of aggregates. Part 1. Sampling methods. Part 2. Methods for reducing laboratory samples. PN-EN 932–1.2.
46.
PN-EN 12457 – Characterization of waste – Leaching – Compliance testing for leaching of granular waste materials and sludge.
47.
PN-EN 15169 – Characterization of waste – Determination of loss on ignition of waste, sludge and sediments.
48.
PN-ISO 10390 – Soil quality – Determination of pH.
49.
PN-ISO 11047 – Soil quality – Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc in soil extracts with aqua regia – Flame and electrothermal atomic absorption spectrometry methods.
50.
Rao et al. 2008 – Rao, C.R.M., Sahuquillo, A. and Lopez Sanchez, J.F. 2008. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air and Soil Pollution 189, pp. 291–333, DOI: 10.1007/s11270-007-9564-0.
51.
Rao et al. 2010 – Rao, C.R.M., Sahuquillo, A. and Lopez Sanchez, J.F. 2010. Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Analytica Chimica Acta 662, pp. 128–136, DOI: 10.1016/j.aca.2010.01.006.
52.
Remon et al. 2005 – Remon, E., J.L. Bouchardon, J.L., Cornier, B., Guy, B., Leclerc J.C. and Faure, O. 2005. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environmental Pollution 137, pp. 316–323, DOI: 10.1016/j.envpol.2005.01.012.
53.
Salihoglu, G. and Pinarli, V. 2008. Steel foundry electric arc furnace dust management: Stabilization by using lime and Portland cement. Journal of Hazardous Materials 153, pp. 1110–1116, DOI: 10.1016/j.jhazmat.2007.09.066.
54.
Schwertmann, U. and Cornell, R.M. 2000. Iron oxides in the laboratory; preparation and characterisation. Villey–VCH Verlag GmbH, Weinheim.
55.
Siddique et al. 2010 – Siddique, R., Kaur, G. and Rajor, A. 2010. Waste foundry sand and its leachate characteristics. Resources, Conservation and Recycling 54, pp. 1027–1036, DOI: 10.1016/j.resconrec.2010.04.006.
56.
Strobos, J.G. and Friend, J.F.C. 2004. Zinc recovery from baghouse dust generated at ferrochrome foundries. Hydrometallurgy 74(1–2), pp. 165–171, DOI: 101016/jhydromet200403002.
57.
Świetlik, R. and Trojanowska, M. 2008. Chemical fractionation methods used in environmental studies (Metody frakcjonowania chemicznego stosowane w badaniach środowiskowych). Monitoring Środowiska Przyrodniczego 9, pp. 29–36, Kielce: Kieleckie Towarzystwo Naukowe (in Polish).
58.
Tessier et al. 1979 – Tessier, A., Campbell, P.G.C. and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, pp. 844–851.
59.
Ure et al. 1993 – Ure, A.M., Quevauviller, P., Muntau, H. and Gripink, B. 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under auspicies of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry 51, pp. 135–151.
61.
Venditti et al. 2000a – Venditti, D., Dure´cu, S. and Berthelin, J. 2000. A multidisciplinary approach to assess history, environmental risks and remediation feasibility of soils contaminated by metallurgical activities. Part A: chemical and physical properties of metals and leaching ability. Archives of Environmental Contamination and Toxicology 38, pp. 411–420.
62.
Venditti et al. 2000b – Venditti, D., Berthelin, J. and Durecu, S. 2000. A multidisciplinary approach to assess history, environmental risks and remediation feasibility of soils contaminated by metallurgical activities. Part B: direct metal speciation in the solid phase. Archives of Environmental Contamination and Toxicology 38, pp. 421–427.
63.
Zhang et al. 2014 – Zhang, H., Su, L., Li, X., Zuo, J., Liu, G. and Wang, Y. 2014. Evaluation of soil microbial toxicity of waste foundry sand for soil–related reuse. Frontiers of Environmental Science and Engineering 8(1), pp. 89–98, DOI: 10.1007/s11783-013-0591-3.