ORIGINAL PAPER
Gemological – geochemical characteristics of western Anatolian (Karacasu) citrines
 
More details
Hide details
1
Batman University
 
 
Submission date: 2024-02-27
 
 
Final revision date: 2024-04-01
 
 
Acceptance date: 2024-08-05
 
 
Publication date: 2024-09-11
 
 
Corresponding author
Eyyüp Hikmet Kınacı   

Batman University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(3):153-167
 
KEYWORDS
TOPICS
ABSTRACT
Gemstones have been valued by people for thousands of years, even before the science of geology was established. Ornamental stones are formed by elements commonly found in nature, such as oxygen, carbon, aluminum, silicon, and magnesium. Silica group gemstones, with the chemical formula SiO2, are the most common gemstone group in the world. The presence of trace elements like Fe, Ni, Cr, and Cu gives them different colors. Quartz is a semi-precious inorganic gemstone that consists of Silicon dioxide (SiO2) and crystallizes naturally, and it also stands out as a gemstone. In this study, the aim was to determine the geological, geochemical, and gemological properties of citrine formations in Western Anatolia (Karacasu–Aydin–Turkiye). In this context; XRF, Raman spectrum and FTIR studies were carried out to determine the chemical and gemological properties of the samples collected from the study area. According to studies; The iron content of citrines is between 0.05–0.07%. As a result of Raman spectrometry, wavelength results of 175 cm–1, 300 cm–1, and 460 cm–1 were obtained. In addition, it has been determined that citrine formations are in the form of thin veins in the crack zones at the contacts of the metamorphic units in the region. Yellow quartz crystals, which are gemologically identified as citrine, were shaped and their gemstone value was revealed. Although citrines are called ferrous quartz, they gain a striking appearance when they are faceted, polished, and turned into the final product in terms of ornamental stones. Given that, in the jewelry sector, heat-treated stones, which are more affordable and readily accessible, are commonly used instead of citrine, it is believed that this study can provide significant insights into the characterization of the jewelry.
METADATA IN OTHER LANGUAGES:
Polish
Charakterystyka gemmologiczno-geochemiczna cytryn z zachodniej Anatolii (Karacasu)
cytryn, gemmologia, Karacasu, kwarc, kamień szlachetny
Kamienie szlachetne są cenione przez ludzi od tysięcy lat, jeszcze zanim powstała nauka geologii. Kamienie ozdobne są tworzone przez pierwiastki powszechnie występujące w przyrodzie, takie jak: tlen, węgiel, aluminium, krzem i magnez. Kamienie szlachetne z grupy krzemionki, o wzorze chemicznym SiO2, są najbardziej rozpowszechnioną grupą kamieni szlachetnych na świecie. Obecność pierwiastków śladowych, takich jak: Fe, Ni, Cr i Cu, nadaje im różne kolory. Kwarc jest półszlachetnym nieorganicznym kamieniem szlachetnym, który składa się z dwutlenku krzemu (SiO2) i krystalizuje naturalnie, a także wyróżnia się jako kamień szlachetny. Celem tego badania było określenie właściwości geologicznych, geochemicznych i gemmologicznych formacji cytrynowych w zachodniej Anatolii (Karacasu–Aydin–Turcja). W tym kontekście przeprowadzono badania XRF, widma Ramana i FTIR w celu określenia właściwości chemicznych i gemmologicznych próbek zebranych z badanego obszaru. Według badań, zawartość żelaza w cytrynach wynosi od 0,05 do 0,07%. W wyniku spektrometrii Ramana uzyskano wyniki długości fal 175 cm–1, 300 cm–1 i 460 cm–1. Ponadto ustalono, że formacje cytrynowe występują w postaci cienkich żył w strefach spękań na stykach jednostek metamorficznych w regionie. Żółte kryształy kwarcu, które z gemmologicznego punktu widzenia identyfikowane są jako cytryn, zostały ukształtowane i ujawniono ich wartość jako kamieni szlachetnych. Chociaż cytryny nazywane są kwarcem żelazistym, zyskują efektowny wygląd, gdy są fasetowane, polerowane i przekształcane w produkt końcowy w postaci kamieni ozdobnych. Biorąc pod uwagę, że w sektorze jubilerskim zamiast cytrynów powszechnie stosuje się kamienie poddane obróbce cieplnej, które są bardziej przystępne cenowo i łatwo dostępne, uważa się, że badanie to może dostarczyć istotnych informacji na temat charakterystyki biżuterii.
 
REFERENCES (49)
1.
Acıkalın, S. 2005. Sedimentary evolution of the Karacasu cross-graben (Aydın, West Anatolia). MSc, Eskisehir Osmangazi University, Eskisehir, Turkiye.
 
2.
Alcicek, H. and Jiménez-Moreno, G. 2013. Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology 291, pp. 62–83.
 
3.
Akbudak et al. 2018 – Akbudak, İ.K., Başıbüyük, Z., Gürbüz, M., Öztüfekçi, A.Ö. and İşler, F. 2018. Siliceous Gemstone Formations in Yamadağ Volcanics (Arguvan-Malatya): Mineralogical, Geochemical, Gemological (Features and Economic Importance Yamadağ Volkanitleri (Arguvan-Malatya) İçerisinde Silisli Süstaşı Oluşumları: Mineralojik, Jeokimyasal, Gemolojik Özellikleri ve Ekonomik Önemleri). Journal of the Faculty of Engineering and Architecture of Gazi University 33(1), pp. 211–219, DOI: 10.17341/gazimmfd.406793 (in Turkish).
 
4.
Başıbüyük, Z. 2018. Mineralogical, geochemical, and gemological characteristics of silicic gemstone in Aydıncık (Yozgat-Turkey). Arabian Journal of Geosciences 11, pp. 1–11, DOI: 10.1007/s12517-018-3615-2.
 
5.
Başibüyük et al. 2023 – Başibüyük, Z., Gürbüz, M. and Akbudak, I.K. 2023. Surprise eggs, the miracle of nature: almus agates (Tokat-Turki̇ye). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(1), pp. 5–22, DOI: 10.24425/gsm.2023.144632.
 
6.
Bozkurt, E. (ed.). 2001. Special Issue Menderes Massif (western Turkey): Structural, Metamorphic and Magmatic Evolution. Springer.
 
7.
Caucia et al. 2016 – Caucia, F., Marinoni, L., Ghisoli, C. and Leone, A. 2016. Gemological, physical and chemical properties of prase opals from Hanety Hill (Tanzania). Periodico di Mineralogia 85, pp. 41–50, DOI: 10.2451/2016PM601.
 
8.
Chesterman, C.W. 1979. Field Guide to Rocks and Minerals. [In:] National Audubon Society by Alfred A. Knopf, New York, 856 pp.
 
9.
Cheng, R. and Guo, Y. 2020. Study on the effect of heat treatment on amethyst color and the cause of coloration. Scientific Reports 10(1), DOI: 10.1038/s41598-020-71786-1.
 
10.
Dora et al. 1990 – Dora, O.Ö., Kun, N. and Candan, O. 1990. Metamorphic history and geotectonic evolution of the Menderes Massif. In Proceedings of the International Earth Sciences Congress on Aegean Regions (eds. Savascin M.Y. and Eronat A.H.), vol. II, pp. 102–115.
 
11.
Dürr, S., 1975. Über Alter und geotektonische Stellung des Menderes-Kristallins/SWA natolien und seine Äequivalente in der mittleren Ägäis. Habilitation Thesis, University of Marburg/Lahn, 107 pp.
 
12.
Ertik, T. 2013. Investigatin of luminescence properties of the citrine by using different luminescence techniques. Master Thesis, Celal Bayar University Institute of Science and Technology.
 
13.
Ethem, M.Y. 2007. Precious and semi-precious stones (ornamental stones) from A to Z (A’dan Z’ye Kıymetli ve Yarı Kıymetli Taşlar (Süs Taşları)). Belen Publishing, 2nd edition, Ankara (in Turkish).
 
14.
Götze et al. 2001 – Götze, J., Tishomirowa, M., Fuchs, H., Pilot, J. and Sharp, Z.D. 2001. Geochemistry of agates: a trace element and stable isotop study. Chemical Geology 175(3–4), pp. 523–541, DOI: 10.1016/S0009-2541(00)00356-9.
 
15.
Götze et al. 2004 – Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. and Bray, C.J. 2004. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta 68(18), pp. 3741–3759, DOI: 10.1016/j. gca.2004.01.003.
 
16.
Götze et al. 2021– Götze, J., Pan, Y. and Müller, A. 2021. Mineralogy and mineral chemistry of quartz: A review. Mineralogical Magazine 85(5), DOI: 10.1180/mgm.2021.72.
 
17.
Gül, M. 2018. General Geology of the Mugla Region. In Güler, T., Güney, A. and Polat, E. (eds), 2018. Mining in Muğla: Potential and Evaluation. TMMOB Chamber of Mining Engineers, pp. 1–47.
 
18.
Hainschwang, T. 2016. Gemstone Analysis by Spectroscopy. [In:] Encycl. Spectrosc. Spectrom, pp. 18–24. DOI: 10.1016/B978-0-12-409547-2.12158-4.
 
19.
Horasan, B.Y. and Ozturk, A. 2021. Features of Andesites Used in Buildings Around Incesu (Seydisehir) Region. Journal of the Institute of Science and Technology 11(3), pp. 2079–2090, DOI: 10.21597/jist.877230.
 
20.
Horasan et al. 2022 – Horasan, B.Y., Yüksel, O. and Öztürk, A. 2022. The geological–geochemical characteristics of the Binbir Church (Karaman, Turkey) archaeological site and the alteration of the rocks used in the buildings. Environmental Earth Sciences 81, DOI: 10.1007/s12665-022-10428-3.
 
21.
Izzo et al. 2020 – Izzo, F., Germinario, C., Grifa, C., Langella, A. and Mercurio, M. 2020. External reflectance FTIR dataset (4000–400 cm−1) for the identification of relevant mineralogical phases forming Cultural Heritage materials. Infrared Physics & Technology 106, DOI: 10.1016/j.infrared.2020.103266.
 
22.
Jenkins, A.L. and Larsen, R.A. 2004. Gemstone identification using Raman spectroscopy. disclosure 7, 9.
 
23.
Jeršek, M. and Kramar, S. 2014. Raman microspectroscopy of gemstones from a chalice made in 1732. Journal of Raman Spectroscopy 45(11–12), DOI: 10.1002/jrs.4560.
 
24.
Kastelli, M. 1971. Geological investigation of Denizli-Sarayköy-Çubukdag-Karacasu area. MTA report no: 4573.
 
25.
Kınacı, E.H. and Ozturk, A. 2023. Gemological features of diaspore in Sodra–Milas (Mugla) region. Frontiers in Earth Science 11, DOI: 10.3389/feart.2023.1145674.
 
26.
Kınacı et al. 2023 – Kınacı, E.H., Ozturk, A. and Horasan, B.Y. 2023. Investigation of Geological and Gemological Characteristics of Opal-Chalcedony Formations Observed in Listvenites in the Hatip-Çayırbağı (Meram-Konya) Region. International Journal of Environmental Trends (IJENT) 7(2), pp. 54–72.
 
27.
Konak, N. and Goktas, F. 2004. 1/100,000 scale Turkey geological maps series, Denizli-M21 sheet: MTA Gen. Reg. Department of Geological Surveys, Ankara.
 
28.
Klein, C. and Dutrow, B. 2008. The Manual of Mineral Science. New York: John Wiley & Sons.
 
29.
Lafuente et al. 2015 – Lafuente, B., Downs, R.T., Yang, H. and Stone, N. 2015. The power of databases: the RRUFF project. [In:] Highlights in Mineralogical Crystallography. DOI: 10.1515/9783110417104-003.
 
30.
Lehmann, G. and Moore, W.J. 1966. Optical and paramagnetic properties of iron centers in quartz. J. Chem. Phys. 44(5), pp. 1741–1745, DOI: 10.1063/1.1726932.
 
31.
Lehmann, G. 1970. Ligand field and charge transfer spectra of Fe(lII)-O complexes. Z Physik Chem. (Frankfurt), 72, pp. 279–297.
 
32.
Lehmann, G. 1971. Yellow color centers in natural and synthetic quartz. Physik der Kondensierten Materie 13, pp. 297–306, DOI: 10.1007/BF02422610.
 
33.
Maschmeyer et al. 1980 – Maschmeyer, D., Niemann, K., Hake, K., Lehmann, G. and Räuber, A. 1980. Two modified smoky quartz centres in natural citrine. Physics and Chemistry of Minerals 6, pp. 145–156, DOI: 10.1007/BF00311051.
 
34.
Mercurio et al. 2017 – Mercurio, M., Germinario, C., Grifa, C., Izzo, F. and Langella, A. 2017. Non-invasive FTIR spectroscopy: new preliminary data for the identification of mineralogical phases forming Cultural Heritage materials. Rend. Online Soc. Geol. Ital. 42, pp. 115–118, DOI: 10.3301/ROL.2017.27.
 
35.
Mercurio et al. 2018 – Mercurio, M., Rossi, M., Izzo, F., Cappelletti, P., Germinario, C., Grifa, C., Petrelli, M. Vergara, A. and Langella, A. 2018. The characterization of natural gemstones using non-in-vasive FTIR spectroscopy: new data on tourmalines. Talanta 178, pp. 147–159, DOI: 10.1016/j.talanta.2017.09.030.
 
36.
Monarumit et al. 2021 – Monarumit, N., Sakkaravej, S., Wanthanachaisaeng, B., Saiyasombat, C. and Wongkokua, W. 2021. Causes of color in purple- and yellow- quartz. Journal of Physics: Conference Series; Bristol 1719(1), DOI: 10.1088/1742-6596/1719/1/012001.
 
37.
Nassau, K. and Prescott, B.E. 1977. Smoky, blue, greenish yellow, and other irradiation-related colors in quartz. Mineralogical Magazine 41(319), pp. 301–312, DOI: 10.1180/minmag.1977.041.319.01.
 
38.
Nassau, K. 1981. Artificially induced color in amethyst-citrine quartz. Gems & Gemology 17(1), pp. 37–39.
 
39.
Rossman, G.R. 1994. Colored varieties of the silica minerals. [In:] Reviews in Mineralogy, Silica – Physical behavior, geochemistry and materials applications. Mineralogical Society of America 29.
 
40.
Shad, F.A. 2021. Spectroscopic Identification and Characterization of Gemstone Minerals, 126 pp.
 
41.
Schuiling, R.D. 1962. On petrology, age and structure of the Menderes migmatite complex (SW-Turkey). Bulletin of the Mineral research and Exploration Institute of Turkey 58, pp. 71–84.
 
42.
Schumann, W. 2009. Gemstones of the world. NY Sterling Publishing Co., 319 pp.
 
43.
Stern et al. 2013 – Stern, R.J., Tsujimori, T., Harlow, G. and Groat, L.A. 2013. Plate tectonic gemstones. Geology 41(7), pp. 723–726.
 
44.
Taslıgil, N. and Sahin, G. 2016. Focus of Economic Geography Analysis of Building Materials Used As Natural Stone. Marmara Geographical Journal, pp. 607–640.
 
45.
Topal, S. 2019. Investigation of the relative tectonic activity of the Karacasu Fault (SW Turkey) by geomorphic indices. Gumushane Unv. Science Journal 9(1), pp. 37–48.
 
46.
Uygun, A. and Gumuscu, A. 2000. Geology and Origin of Albite Deposits in the Çine Asmasifi (GB-Anadolu). MTA Journal 122, pp. 25–32.
 
47.
Vieil et al. 2004 – Vieil, M., Cavusoglu, I., Celep, O., Alp, I. and Yilmaz, A.O. 2004. Opal and General Properties. 5th Industrial Raw Materials Symposium, 13–14 May, Izmir.
 
48.
Weil, J.A. 1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals 10(4), pp. 149–165, DOI: 10.1007/BF00311472.
 
49.
Yıldız et al. 2023 – Yıldız, T.D., Coşkun, N.D., Uz, V., İssi, A. and Uz, B. 2023. Geological, petrographical, mineralogical, geochemical and gemological features of Malatya rubies. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(4), pp. 141–156, DOI: 10.24425/gsm.2023.148162.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top