ORIGINAL PAPER
Geological, petrographical, mineralogical, geochemical and gemological features of Malatya rubies
 
More details
Hide details
1
Adana Alparslan Türkeş Science and Technology University, Department of Mining Engineering
 
2
Ordu University, Department of Ceramics and Glass
 
3
Dumlupınar University, Department of Materials Science and Engineering
 
4
Istanbul Technical University, Department of Geology Engineering
 
 
Submission date: 2023-05-05
 
 
Final revision date: 2023-08-15
 
 
Acceptance date: 2023-10-03
 
 
Publication date: 2023-12-13
 
 
Corresponding author
Taşkın Deniz Yıldız   

Adana Alparslan Türkeş Science and Technology University, Department of Mining Engineering
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2023;39(4):141-156
 
KEYWORDS
TOPICS
ABSTRACT
There are significant ruby formations across the world that have been commercialized. In Türkiye there are many mineralogical formation regions with gemological features of high quality. However, there is not enough information in the literature about the formation of ruby in Türkiye, and its usability as a precious stone. In contrast to previous studies, this paper was conducted to reveal the gemological properties of Doğanşehir (Malatya province) rubies and to investigate the usability of polished and cut ruby samples as gemstones. Ruby corundum formations of gemstone quality have recently been discovered in Göksun ophiolites in the Doğanşehir district of Türkiye. These ruby formations take place in greenish and grayish amphibolites in the Göksun ophiolites. The ruby crystals are observed in colors ranging from pink to red and sizes ranging between 2 × 10 mm and 30 × 50 mm. The tectonic position, geological environment, petrographic, mineralogical, geochemical, and gemological characteristics of Doğanşehir crystals indicate that they can be classified as rubies and can be likened to those gems formed in amphibolites in Tanzania. This indicates that Doğanşehir rubies have gemological and mineralogical parameters that are competitive with rubies existing in other places across the world after polishing and cutting. Examples of Doğanşehir rubies prepared by polishing and cutting show that these rubies may feature in the global market in the coming years. Doğanşehir rubies are suitable for COBACORE (community based comprehensive recovery) cutting mostly in large sizes and amounts. Thus, it is a potential gemstone source. Samples prepared by polishing and cutting indicate their suitability as gemstones.
METADATA IN OTHER LANGUAGES:
Polish
Cechy geologiczne, petrograficzne, mineralogiczne, geochemiczne i gemmologiczne rubinów z Malatyi
korund, gemmologia, kamień szlachetny, rubin, szafir
Na całym świecie istnieją znaczące formacje rubinów, które zostały skomercjalizowane. W Turcji znajduje się wiele regionów formacji mineralogicznych o cechach gemmologicznych wysokiej jakości. Jednak w literaturze nie ma wystarczających informacji na temat powstawania rubinu w Turcji i jego przydatności jako kamienia szlachetnego. W przeciwieństwie do poprzednich badań, niniejsza praca miała na celu ujawnienie właściwości gemmologicznych rubinów z Doğanşehir (prowincja Malatya) oraz zbadanie przydatności wypolerowanych i ciętych próbek rubinu jako kamieni szlachetnych. W ofiolitach Göksun w dystrykcie Doğanşehir w Turcji odkryto niedawno formacje korundu rubinowego o jakości kamieni szlachetnych. Te formacje rubinowe występują w zielonkawych i szarawych amfibolitach w ofiolitach Göksun. Kryształy rubinu występują w kolorach od różowego do czerwonego i rozmiarach od 2 × 10 mm do 30 × 50 mm. Położenie tektoniczne, środowisko geologiczne, właściwości petrograficzne, mineralogiczne, geochemiczne i gemmologiczne kryształów Doğanşehir wskazują, że można je zaliczyć do rubinów i porównać do klejnotów powstałych w amfibolitach w Tanzanii. Wskazuje to, że rubiny Doğanşehir mają parametry gemmologiczne i mineralogiczne, które po wypolerowaniu i cięciu są konkurencyjne w stosunku do rubinów występujących w innych miejscach na świecie. Przykłady rubinów Doğanşehir przygotowanych metodą polerowania i cięcia pokazują, że rubiny te mogą pojawić się na światowym rynku w nadchodzących latach. Rubiny Doğanşehir nadają się do cięcia COBACORE (kompleksowe odzyskiwanie oparte na społeczności), głównie w dużych rozmiarach i ilościach. Jest to zatem potencjalne źródło kamieni szlachetnych. Próbki przygotowane przez polerowanie i cięcie wskazują na ich przydatność jako kamieni szlachetnych.
 
REFERENCES (50)
1.
Barot, N.R. and Harding, R.R. 1994. Pink corundum from Kitui, Kenya. The Journal of Gemmology 24(3), pp. 165–172.
 
2.
Başıbüyük, Z. 2018. Mineralogical, geochemical, and gemological characteristics of silicic gemstone in Aydıncık (Yozgat-Türkiye). Arabian Journal of Geosciences 11(292), DOI: 10.1007/s12517-018-3615-2.
 
3.
Başıbüyük et al. 2020 – Başıbüyük, Z., Kaydu Akbudak, İ. and Gürbüz, M. 2020. Mineralogical, geochemical and gemological investigation of Artova Ch-chalcedonies, Tokat – Türkiye. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(1), pp. 77–92, DOI: 10.24425/gsm.2020.132551.
 
4.
Başıbüyük et al. 2023 – Başıbüyük, Z., Gürbüz, M. and Kaydu Akbudak, İ. 2023. Surprise eggs, the miracle of nature: almus agates (Tokat – Turki̇ye). Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), pp. 5–22, DOI: 10.24425/gsm.2023.144632.
 
5.
Bidny et al. 2010 – Bidny, A.S., Dolgova, O.S., Baksheev, I.A. and Ekimenkova, I.A. 2010. New data for distinguishing between hydrothermal synthetic, flux synthetic and natural corundum. The Journal of Gemmology 32(1–4), pp. 7–13.
 
6.
Boulon, G. 2012. Fifty years of advances in solid-state laser materials. Optical Materials, 34(3), pp. 499-512, DOI: 10.1016/j.optmat.2011.04.018.
 
7.
Bowersox et al. 2000 – Bowersox, G.W., Foord, E.E., Laurs, B.M., Shigley, J.E. and Smith, C.P. 2000. Ruby and sapphire from jegdalek, Afghanistan. Gems & Gemology 36(2), pp. 110-126. [Online:] https://www.gia.edu/doc/Ruby-a... [Accessed: 2023-06-12].
 
8.
Carbonin et al. 1998 – Carbonin, S., Sbrignadello, G. and Ajo, D. 1998. An interdisciplinary approach to identifying solid inclusions in corundum: Thorite in a ‘Sri Lanka’ sapphire. The Journal of Gemmology 26(4), pp. 262–264.
 
9.
Chapin et al. 2015 – Chapin, M., Pardieu, V. and Lucas, A. 2015. Mozambique: A ruby discovery for the 21st century. Gems & Gemology 51(1), pp. 44–54, DOI: 10.5741/GEMS.51.1.44.
 
10.
Duroc-Danner, J.M. 2002. A comparison between a flux grown synthetic ruby and an untreated natural ruby. The Journal of Gemmology 28(3), pp. 137–142.
 
11.
Esenli et al. 2001 – Esenli, R.F., Kumbasar, I., Eren, R.H. and Uz, B. 2001. Characteristics of opals from Simav Türkiye. Neues Jahrbuch für Mineralogie 3(3), pp. 97–113, DOI: 000167527800001.
 
12.
Esenli et al. 2003 – Esenli, R.F., Kumbasar, I., Esenli, V. and Kırıkoğlu, M.S. 2003. A study on the characteristics of some opals from Türkiye. Neues Jahrbuch für Mineralogie – Monatshefte 4, pp. 177–192, DOI: 10.1127/0028-3649/2003/2003-0177.
 
13.
Esenli, R.F. and Ekinci-Şans, B. 2013. XRD studies of opals 4 Å peak in bentonites from Türkiye Implications for the origin of bentonites. Neues Jahrbuch für Mineralogie – Abhandlungen: Journal of Mineralogy and Geoche, 191(1), pp. 45–53, DOI: 10.1127/0077-7757/2013/0246.
 
14.
Ethem, M.Y. 2007. Precious and semi-precious stones (ornamental stones) from A to Z (A’dan Z’ye Kıymetli ve Yarı Kıymetli Taşlar (Süs Taşları)). Belen Publishing, 2nd edition, Ankara (in Turkish).
 
15.
Genç et al. 1993 – Genç, Ş.C., Yiğitbaş, E. and Yılmaz, Y. 1993. The geology of the Berit Metaophiolite: A. Expanded Abstracts, Ankara University, Geology Department, Ankara, Suat Erk Geology Symposium, pp. 37–52.
 
16.
Grubessi, O. and Marcon, R. 1986. A peculiar inclusion in a yallow corundum from Malawi. The Journal of Gemmology 20(3), pp. 163–165.
 
17.
Gubelin, E.J. 1982. Gemstones of Pakistan: Emerald, ruby, and spinel. Gems & Gemology, Fall 1982, pp. 123–139. [Online:] https://www.gia.edu/doc/Gemsto... [Accessed: 2023-06-12].
 
18.
Hanni, H.A. and Schmetzer, K. 1991. New rubies from Morogoro area. Tanzania. Gems & Gemology 27(3), pp. 156–167. [Online:] https://www.gia.edu/doc/FA91A2... [Accessed: 2023-06-12].
 
19.
Henn et al. 1990 – Henn, U., Bank, K. and Bank, F.H. 1990. Red and orange corundum (ruby and padparadscha) from Malawi. The Journal of Gemmology 22(2), pp. 83–89.
 
20.
Hughes, R.W. 1988. Surface repaired corundum – two unusual variations. The Journal of Gemmology, 21(1), pp. 8–10.
 
21.
Hughes, E.B. and Vertriest, W. 2022. A canary in the ruby mine: Low-temperature heat treatment experiments on Burmese ruby. Gems & Gemology 58(4), pp. 400–423, DOI: 10.15506/JoG.2016.35.2.156.
 
22.
Kane, R.E. and Kammerling, R.C. 1992. Status of ruby and sapphire mining in the mokok stone tract. Gems & Gemology, 28(3), pp. 152–174. [Online:] https://www.gia.edu/doc/Status... [Accessed: 2023-06-12].
 
23.
Kane et al. 1991 – Kane, R.E., Mcclure, S.F., Kammerling, RC., Khoa, N.D., Mora, C., Repetto, S., Khai, N.D. and Koivula, J.I. 1991. Rubies and fancy sapphires from Vietnam. Gems & Gemology 27(3), pp. 136–155. [Online:] https://www.gia.edu/doc/FA91A1... [Accessed: 2023-06-12].
 
24.
Karaoğlan et al. – Karaoğlan, F., Parlak, O., Robertson, A., Thöni, M., Klötzli, U., Koller, F. and Okay, A.I. 2013. Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia). Geological Society, London, Special Publications 372, pp. 249-272, DOI: 10.1144/SP372.21.
 
25.
Kaydu Akbudak et al. 2018a – Kaydu Akbudak, İ., Basıbüyük, Z. and Gürbüz, M. 2018a. Yozgat “Aydıncık” kalsedon-ametist oluşumlarının mineralojisi-petrografisi ve ekonomikliliğinin incelenmesi (Mineralogical and petrographic properties of calcedon-amethysts of Yozgat “Aydıncık”). Dicle University Journal of Engineering 9(1), pp. 313–324 (in Turkish).
 
26.
Kaydu Akbudak et al. 2018b – Kaydu Akbudak, İ., Başıbüyük, Z., Gürbüz, M., Öztüfekçi A.Ö. and İşler F. 2018b. Yamadağ Volkanitleri (Arguvan-Malatya) İçerisinde Silisli Süstaşı Oluşumları: Mineralojik, Jeokimyasal, Gemolojik Özellikleri ve Ekonomik Önemleri (Silica gemstones formation in Yamadağ volcanites (Arguvan-Malatya) mineralogical, geochemical, gemological properties and economic importance). Gazi University Journal of Engineering and Architecture 33(1), pp. 211–219 (in Turkish).
 
27.
Kaydu Akbudak et al. 2021 – Kaydu Akbudak, İ., Gürbüz, M., Başıbüyük, Z., Hatipoğlu, M., Öztüfekçi Önal A. and İşler, F. 2021. Mineralogical and gemological characteristics of metaophiolite hosted corundum (Malatya-Türkiye). Sakarya University Journal of Science 25(2), pp. 288–296, DOI: 10.16984/saufenbilder.644002.
 
28.
Khoi et al. 2011 – Khoi, N.N.C., Sutthirat, D.A., Tuan, N.V., Nam, N.T.M., Thuyet, N.T.M and Nhung, N.T. 2011. Nhung, Ruby and sapphire from the Tan Huong-Truc Lau area. Yen Bai province, Northern Vietnam. Gems & Gemology 47(3), pp. 182–195, DOI: 10.5741/GEMS.47.3.182.
 
29.
Mahroof, M.M.M. 1992. The Sri Lankan ruby: fact or fable? The Journal of Gemmology 23(1), pp. 20–24.
 
30.
Mercier et al. 1999 – Mercier, A., Rakotondrazafy, M. and Ravolomiandrinarivo, B. 1999. Ruby mineralization in Southwest Madagascar. Gondwana Research 2(3), pp. 433–438, DOI: 10.1016/S1342-937X(05)70281-1.
 
31.
Önal, A. 1995. Petrographical and petrological features of magmatic rocks in the vicinity of Polat-Beğre Village (Doğanşehir). Fırat University, Institute of Science and Technology, Ph.D. Thesis.
 
32.
Özdamar et al. 2016 – Özdamar, Ş., Esenli, R.F., Kırıkoğlu, M.S., Döner, Z. and Uz, B. 2016. Türkiye’de yakut mineralleşmesi, oluşumu ve özellikleri. Kalsedon 1(1), pp. 20–25.
 
33.
Parlak et al. 2006 – Parlak, O., Höck, V., Kozlu, H. and Delaloye, M. 2006. Oceanic crust generation in an island arc tectonic setting, SE Anatolian orogenic belt (Türkiye). Geological Magazine 141, pp. 583–603, DOI: 10.1017/S0016756804009458.
 
34.
Parlak et al. 2009 – Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F. and Höck, V. 2009. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Türkiye. Tectonophysics 473(1–2), pp. 173–187, DOI: 10.1016/j.tecto.2008.08.002.
 
35.
Pisutha-Arnond et al. 2006 – Pisutha-Arnond, V., Häger, T., Atichat, W. and Wathanakul, P. 2006. The role of Be, Mg, Fe and Ti in causing colour in corundum. The Journal of Gemmology 30(3–4), pp. 131–143.
 
36.
Rankin, A.H. 2002. Natural and heat-treated corundum from Chimwadzulu Hill, Malawi: Genetic significance of zircon clusters and diaspore-bearing inclusions. The Journal of Gemmology 28(2), pp. 65–75.
 
37.
Rankin, A.H. and Edwards, W. 2003. Some effects of extreme heat treatment on zircon inclusions in corundum. The Journal of Gemmology 28(5), pp. 257–264.
 
38.
Sahoo et al. 2015 – Sahoo, R.K., Mohapatra, B.K., Singh, S.K. and Mishra, B.K. 2015. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study. Applied Surface Science 329, pp. 23–31, DOI: 10.1016/j.apsusc.2014.12.111.
 
39.
Schmetzer, K. and Schupp, F.J. 1994. Dyed natural star corundum as a ruby imitation. The Journal of Gemmology 24(4), pp. 253–255.
 
40.
Shor, R. and Weldon, R. 2009. Ruby and sapphire production and distribution: A quarter century of chang. Gems & Gemology 45(4), pp. 236–259. [Online:] https://www.gia.edu/gems-gemol... [Accessed: 2023-06-12].
 
41.
Simonet et al. 2008 – Simonet, C., Fritsch, E. and Lasnier, B. 2008. A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews 34, pp. 127–133, DOI: 10.1016/j.oregeorev.2007.09.002.
 
42.
Song et al. 2005 – Song, C., Hang, Y., Xia, C., Xu, J. amd Zhou, G. 2005. Characteristics of large-sized ruby crystal grown by temperature gradient technique. Optical Materials 27(4), pp. 699–703, DOI: 10.1016/j.optmat.2004.09.012.
 
43.
Sutherland, F.L. and Abduriyim, A. 2009. Geographic typing of gem corundum: A test case from Australia. The Journal of Gemmology 30(5-8), pp. 203–210.
 
44.
Sutherland et al. 1998 – Sutherland F.L., Schwarz, D., Jobbins, E.A. and Coe, R.R. 1998. Distinctive gem corundum suites from discrete basalt fields: A comparative study of Barrington, Australia, and West Pailin, Cambodia, gemfields. The Journal of Gemmology 26(2), pp. 65–85.
 
45.
Url-1. Google/maps. [Online:] https://www.google.com.tr/maps.... 1462317,10z [Accessed: 2023-06-12].
 
46.
Uz et al. 2003 – Uz, B., Esenli, R.F., Özdamar, Ş., Esenli, V. and Suner, M.F. 2003. The comparison of ordering in opal structure in two different bentonite occurrences. Journal of Geological Society of India 62(4), pp. 478–484.
 
47.
Uz et al. 2018 – Uz, V., Uz, B., İssi, A., Coşkun, N.D. and Yıldız, T.D. 2018. The annealing of corundum (ruby) in nitrogen (N2) air. El-Cezeri Journal of Science and Engineering 5(3), pp. 875–881, DOI: 10.31202/ecjse.436515.
 
48.
Van Long et al. 2018 – Van Long, P., Vinh, H.Q., Garnier, V., Giuliani, G., Ohnenstetter, D., Lhomme, T., Schwarz, D., Fallick, A., Dubessy, J. and Trinh, P.T. 2004. Gem corundum deposits in Vietnam. The Journal of Gemmology 29(3), pp. 129–145.
 
49.
Yılmaz, H. 1999. Doğu Toroslar’da Sürgü (Doğanşehir-Malatya) Çevresinin Jeolojisi (Geology of the Sürgü Area (Doganşehir-Malatya) in the Eastern Taurus). Bulletin of Faculty of Engineering of Cumhuriyet University, Serie-A-Earth Sciences 16(1), pp. 95–106. [Online:] https://jeoloji.cumhuriyet.edu... [Accessed: 2023-06-12].
 
50.
Yılmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105(2), pp. 251–271, DOI: 10.1130/0016-7606(1993)105<0251:NEAMOT>2.3.CO;2.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top