ORIGINAL PAPER
Geochemistry of the Cretaceous-Tertiary (K/T) Transition Clays in the Southeastern Turkey
 
 
More details
Hide details
1
Batman University
 
 
Submission date: 2023-09-25
 
 
Final revision date: 2023-11-13
 
 
Acceptance date: 2024-02-05
 
 
Publication date: 2024-03-27
 
 
Corresponding author
Sema Tetiker   

Batman University
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(1):85-103
 
KEYWORDS
TOPICS
ABSTRACT
The mineralogy and chemistry of Upper Cretaceous-Lower Paleocene claystone sediments from Mardin and Batman, southeastern Turkey, were analyzed. The main mineral paragenesis in the Upper Cretaceous member formed chlorite-smectite (C-S) and illite, while the Lower Paleocene member occurred of chlorite-vermiculite (C-V) and vermiculite minerals. The clays were silica-poor but indicated high values of Al, Fe, Mg, Cr, Ni, V, and Zr. Lower contents of the alkali elements (Na, Ca, Mg, K) of the clayey sediments suggests a relatively denser weathering of the source area. The mineralogical compositions, major element ratios, trace, and rare earth element (REE) contents of the sediments show that the Upper Cretaceous member consists of materials with a mainly felsic source lithology, while relatively contributions from basic sources are found in the Lower Paleocene unit. A comparison of the major and trace element contents of the phyllosilicate/clay minerals with the members revealed that the patterns of the clays were different from each other, although the enrichments/decreases varied depending on the origin (basement rocks or detrital) of the derived rocks, minerals, and elements. REE content of clays increased from detrital to phyllosilicate/clay minerals of chemical/diagenetic/neoformation origin during the Lower Paleocene. During the Cretaceous and Tertiary periods, local or regional geodynamic and diagenetic events largely governed the rock sedimentation processes and provenance variations amongst Germav Formation members.
ACKNOWLEDGEMENTS
Some of this research was funded by the Research Fund of Batman University, as part of Project Number 2016-YL-4. Ömer Bozkaya (Pamukkale University), and Dicle Bal Akkoca (Fırat University) are also thanked for their scientific contributions
METADATA IN OTHER LANGUAGES:
Polish
Geochemia iłów przejściowych kredy i trzeciorzędu (K/T) w południowo-wschodniej Turcji
płyta arabska, minerały ilaste, formacja Germav, źródło, REE
W artykule przeanalizowano mineralogię i skład chemiczny osadów iłowców górnej kredy i dolnego paleocenu z Mardin i Batman w południowo-wschodniej Turcji. Główną paragenezą minerałów w elemencie górnej kredy były minerały chloryt-smektyt (C-S) i illit, natomiast w elemencie dolnego paleocenu występowały minerały chloryt-wermikulit (C-V) i wermikulit. Gliny były ubogie w krzemionkę, ale wykazywały wysoką zawartość Al, Fe, Mg, Cr, Ni, V i Zr. Niższa zawartość pierwiastków alkalicznych (Na, Ca, Mg, K) w osadach ilastych sugeruje stosunkowo intensywne zwietrzenie obszaru źródłowego. Skład mineralogiczny, proporcje głównych pierwiastków, zawartość pierwiastków śladowych i pierwiastków ziem rzadkich (REE) w osadach pokazują, że element górnej kredy składa się z materiałów o litologii źródeł felsowych, podczas gdy stosunkowo udział źródeł podstawowych występuje w jednostce dolnego paleocenu. Porównanie zawartości pierwiastków głównych i śladowych w minerałach krzemianów warstwowych/ilastych z członami ujawniło, że układy glin różniły się od siebie, chociaż wzbogacenia/ubytki były odmienne w zależności od pochodzenia (skały bazowe lub detrytyczne) skał pochodnych, minerałów i pierwiastków. W dolnym paleocenie zawartość REE w iłach wzrosła z minerałów detrytycznych do krzemianów warstwowych/ilastych pochodzenia chemicznego/diagenetycznego/neoformacyjnego. W okresie kredy i trzeciorzędu lokalne lub regionalne zdarzenia geodynamiczne i diagenetyczne w dużej mierze wpływały na procesy sedymentacji skał i różnice w pochodzeniu wśród przedstawicieli formacji Germav.
REFERENCES (66)
1.
Abboud, I.A. 2016. Iridium contents in the Late Cretaceous-Early Tertiary clays in relation to the K/T boundary, North Jordan. Journal of African Earth Sciences 118, pp. 107–119, DOI: 10.1016/j.jafrearsci.2016.03.003.
 
2.
Alvarez et al. 1980 – Alvarez, L.W. Alvarez, W. and Asaro, F. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, pp. 1095–1110, DOI: 10.1126/science.208.4448.1095.
 
3.
Bozkaya, Ö. and Yalçın, H. 2010. Geochemistry of mixed-layer illite-smectites from an extensional basin, Antalya Unit, Southwestern Turkey. Clays and Clay Minerals 58(5), pp. 644–666, DOI: 10.1346/CCMN.2010.0580505.
 
4.
Bozkaya et al. 2011 – Bozkaya, Ö. Yalçın, H. and Kodal, M. 2011. Petrologic investigation of Cambrian metaclastic rocks in the western-central Taurus and Amanos regions (Batı-Orta Toroslar ve Amanoslar bölgesindeki Kambriyen yaşlı metaklastik kayaçların petrolojik incelenmesi). Cumhuriyet University Earth Science Journal 28, pp. 31–64 (in Turkish).
 
5.
Brigatti, M.F. and Poppi, L. 1984. Crystal chemistry of corrensite: a review. Clays and Clay Minerals 32, pp. 391–399, DOI: 10.1346/CCMN.1984.0320507.
 
6.
Brindley, G.W. 1980. Quantitative X-ray mineral analysis of clays. [In:] Crystal structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G. eds.). Mineral Society London pp. 411–438, DOI: 10.1180/mono-5.7.
 
7.
Chamley, H. 1989. Clay minerals. Clay sedimentology, pp. 3–20, DOI: 10.1007/978-3-642-85916-8_1.
 
8.
Chengfa et al. 1986 – Chengfa, C. Nansheng, C. Coward, M.P. Wanming, D. and Dewey, J.F. 1986. Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature 323(6088), pp. 501–507, DOI: 10.1038/323501a0.
 
9.
Condie, K.C. 1991. Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta 55(9), pp. 2527–2531, DOI: 10.1016/0016-7037(91)90370-K.
 
10.
Condie, K.C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104, pp. 1–37, DOI: 10.1016/0009-2541(93)90140-E.
 
11.
Constantopoulos, J. 1988. Fluid inclusion and REE geochemistry of fluorite from south central Idaho. Economic Geology 83, pp. 626–636, DOI: 10.2113/gsecongeo.83.3.626.
 
12.
Courtois, C. and Chamley, H. 1978. Terres rares et minéraux argileux dans le Crétacé et le Cénozoïque de la marge Atlantique orientale. Comptes Rendus de l’Académie des Sciences 286 Sèrie D, pp. 671–674.
 
13.
Dai et al. 2015 – Dai, L.Q. Zhao, Z.F. Zheng, Y.F. and Zhang, J. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemistry Geophysics Geosystems 16, pp. 659–680, DOI: 10.1002/2014GC005620.
 
14.
Debrabant et al. 1999 – Debrabant, P. Fourcade, E. Chamley, H. Rocchia, R. and Robin, E. 1999. Les argiles de la transition Cretace-Tertiaire au Guatemala, temoins d’un impact d’asteroide. Bull Soc Géol France 170(5), pp. 643–660.
 
15.
Elderfield et al. 1990 – Elderfield, H. Upstill-Goddard, R. and Sholkovitz, E.R. 1990. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta 54(4), pp. 971–991, DOI: 10.1016/0016-7037(90)90432-K.
 
16.
Elliott, W.C. 1993. Origin of the Mg-smectite at the Cretaceous/Tertiary (K/T) boundary at Stevns Klint, Denmark. Clays and Clay Minerals 41, pp. 442–452, DOI: 10.1346/CCMN.1993.0410405.
 
17.
Feng, R. and Kerrich, R. 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta 54(4), pp. 1061–1081, DOI: 10.1016/0016-7037(90)90439-R.
 
18.
Furquim et al. 2008 – Furquim, S.A.C., Graham, R.C., Barbiero, L. and de Queiroz Neto, J.P. 2008. Mineralogy and genesis of smectites in an alkaline-saline environment of Pantanal wetland, Brazil. Clays and Clay Minerals 56(5), pp. 579–595, DOI: 10.1346/CCMN.2008.0560511.
 
19.
Garver et al. 1996 – Garver, J.I., Royce, P.R. and Smick, T.A. 1996 Chromium and nickel in shale of the Taconic foreland; a case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research 66(1), pp. 100–106, DOI: 10.1306/D42682C5-2B26-11D7-8648000102C1865D.
 
20.
Göncüoğlu et al. 1997 – Göncüoğlu, M.C., Dirik, K. and Kozlu, H. 1997. General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Géologiques des Pays Helléniques 37, pp. 515–536.
 
21.
Graup, G. and Spettel, B. 1989. Mineralogy and phase-chemistry of an Ir-enriched pre-K/T layer from the Lattengebirge, Bavarian Alps, and significance for the KTB problem. Earth and Planetary Science Letters 95(3–4), pp. 271–290, DOI: 10.1016/0012-821X(89)90102-7.
 
22.
Gromet et al. 1984 – Gromet, L.P. Haskin, L.A. Korotev, R.L. and Dymek, R.F. 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48(12), pp. 2469–2482, DOI: 10.1016/0016-7037(84)90298-9.
 
23.
Haskin et al. 1968 – Haskin, L.A., Haskin, M.A., Frey, F.A. and Wildeman, T.R. 1968. Relative and absolute terrestrial abundances of the rare earths. International Series of Monographs in Earth Sciences. Origin and Distribution of the Elements Pergamon, pp. 889–912, DOI: 10.1016/B978-0-08-012835-1.50074-X.
 
24.
He et al. 2003 – He, B., Xu, Y.G., Chung, S.L., Xiao, L. and Wang, Y. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters 213(3–4), pp. 391–405, DOI: 10.1016/S0012-821X(03)00323-6.
 
25.
He et al. 2010 – He, Y.L., Xie, X.N., Li, J.L., Zhang, C. and Su, M. 2010. Depositional characteristics and controlling factors of continental slope system in the Qiongdongnan Basin. Geological Science and Technology Information 29(2), pp. 118–122.
 
26.
Henderson, P. 1984. Rare Earth Element Geochemistry. Developments in Geochemistry. Elsevier, Amsterdam, pp. 317–347.
 
27.
Hiscott, R.N. 1984. Ophiolitic source rocks for Taconic-age flysch: trace elements evidence. Geological Society of America Bulletin 95, pp. 1261–1267, DOI: 10.1130/0016-7606(1984)95%3C1261:OSRFTF%3E2.0.CO;2.
 
28.
Inoue, A. 1987. Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuroku Kuroko mineralization area, Northeast Japan. Proc. Int. Clay Conf., Denver LG, Schultz H, van Olphen, FA Mumpton (eds.). The Clay Minerals Society Bloomington Indiana pp. 158–164, DOI: 10.1346/CMS-ICC-1.21.
 
29.
Inoue, A. and Utada, M. 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, Northern Honshu, Japan. American Mineralogist 76, pp. 628–640.
 
30.
Jaques et al. 1983 – Jaques, A.L. Chappell, B.W. and Taylor, S.R. 1983. Geochemistry of cumulus peridotites and gabbros from the Marum Ophiolite Complex, northern Papua New Guinea. Contrib to Mineral Petrol 82, pp. 154–164, DOI: 10.1007/BF01166610.
 
31.
Jehanno et al. 1987 – Jehanno, C., Maurette, M. and Robin, E. 1987. Fe/Ni cosmic dust grains: A comparison of the Greenland and deep-sea collections. Lunar and Planetary Science Conference, March, Vol. 18.
 
32.
Kerr, R.A.A. 1996. New Dawn for Sun-Climate Links? The long-dismissed idea that the sun could be a major driver of climate change is gaining new adherents as researchers detect the pulse of the sun in the ocean, on land, and in glacial ice. Science 271(5254), pp. 1360–1361, DOI: 10.1126/science.271.5254.1360.
 
33.
Kiessling, W. and Claeys, P. 2001. Spatial patterns of the K/T event. Catastrophic Events and Mass Extinctions: Impacts and Beyond, 3105.
 
34.
Kusky, T.M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research 20(1), pp. 26–35, DOI: 10.1016/j.gr.2011.01.004.
 
35.
Kyte, F.T.A. 1998. Meteorite from the Cretaceous/Tertiary boundary. Nature 396(6708), pp 237–239, DOI: 10.1038/24322.
 
36.
Lara et al. 2018 – Lara, M.C. Buss, H.L. and Pett-Ridge, J.C. 2018. The effects of lithology on trace element and REE behavior during tropical weathering. Chemical Geology 500, pp. 88–102, DOI: 10.1016/j.chemgeo.2018.09.024.
 
37.
Madhavaraju et al. 2002 – Madhavaraju, J. Ramasamy, S.A. Ruffell, A. and Mohan, S.P. 2002. Clay mineralogy of the late Cretaceous and early Tertiary successions of the Cauvery Basin (southeastern India): implications for sediment source and palaeoclimates at the K/T boundary. Cretaceous Research 23(2), pp. 153–163, DOI: 10.1006/cres.2002.0310.
 
38.
Martinez-Ruiz et al. 2001 – Martinez-Ruiz, F. Ortega-Huertas, M. Kroon, D. Smit, J. and Palomo-Delgado, I. 2001. Geochemistry of the Cretaceous-Tertiary boundary at Blake Nose (ODP Leg 171B). Geological Society London Special Publications 183(1), pp. 131–148, DOI: 10.1144/GSL.SP.2001.183.01.07.
 
39.
Maxon, J.H. 1936. Geology and petroleum possibilities of the Hermis dome. General Directorate of Mineral Research and Exploration Report No: 255, 25 p (unpublished).
 
40.
McLennan et al. 1983 – McLennan, S.M., Taylor, S.R. and Eriksson, K.A. 1983. Geochemistry of Archean shales from the Pilbara Supergroup, western Australia. Geochimica et Cosmochimica Acta 47(7), pp. 1211–1222, DOI: 10.1016/0016-7037(83)90063-7.
 
41.
Moses, H.F. 1934. Geological report on the Mardin-Cizre region. Southeastern Turkey. General Directorate of Mineral Research and Exploration Report No: 212, 17 p (in Turkish).
 
42.
MTA, 2008. 1:100000 scale Geological Maps of Turkey, Mardin- M47 sheet (1:100 000 Ölçekli M47 Mardin Paftası Jeoloji Haritası). General Directorate of Mineral Research and Exploration, Department of Geological Studies, Ankara, Turkey (in Turkish).
 
43.
Noack, Y. and Colin, F. 1986. Chlorites and chloritic mixed-layer minerals in profiles on ultrabasic rocks from Moyango (Ivory-Coast) and Angiquinho (Brazil). Clay Minerals 21(2), pp. 171–182, DOI: 10.1180/claymin.1986.021.2.06.
 
44.
Ortega-Huertas et al. 1995 – Ortega-Huertas, M., Ruíz, F.M., Palomo, I. and Chamley, H. 1995. Comparative mineralogical and geochemical clay sedimentation in the Betic Cordilleras and Basque-Cantabrian Basin areas at the Cretaceous-Tertiary boundary. Sedimentary Geology 94(3–4), pp. 209–227, DOI: 10.1016/0037-0738(94)00087-B.
 
45.
Ortega-Huertas et al. 1998 – Ortega-Huertas, M., Palomo, I., Martinez, F. and González, I. 1998. Geological factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections. Clay Minerals 33(3), pp. 483–500, DOI: 10.1180/000985598545651.
 
46.
Pal et al. 2015 – Pal, S., Shrivastava, J.P. and Mukhopadhyay, S.K. 2015. Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the late Cretaceous-early Palaeogene succession of the Um-Sohryngkew River section of Meghalaya, India. Geochemistry 75(4), pp. 445–463, DOI: 10.1016/j.chemer.2015.09.004.
 
47.
Pollastro, R.M. and Barker, C.E. 1986. Application of clay-mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming. SEPM Special Publication 38, pp. 73–83.
 
48.
Rampino, M.R. and Reynolds, R.C. 1983. Clay mineralogy of the Cretaceous-Tertiary boundary clay. Science 219(4584), pp. 495–498, DOI: 10.1126/science.219.4584.495.
 
49.
Renaut, R.W. 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. Sedimentology 40(2), pp. 271–301, DOI: 10.1111/j.1365-3091.1993.tb01764.x.
 
50.
Roaldset, E. 1973. Rare earth elements in Quaternary clays of the Numedal area, southern Norway. Lithos 6(4), 349-372, DOI: 10.1016/0024-4937(73)90053-4.
 
51.
Robert, C. and Chamley, H. 1990 Paleoenvironmental significance of clay mineral associations at the Cretaceous-Tertiary passage. Palaeogeography Palaeoclimatology Palaeoecology 79(3–4), pp. 205–219, DOI: 10.1016/0031-0182(90)90018-3.
 
52.
Robertson et al. 2007 – Robertson, A.H.F. Parlak, O. Rızaoğlu, T. Ünlügenç, Ü. and İnan N. 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elaziğ region, SE Turkey). Geological Society Special Publication 272, pp. 231–270, DOI: 10.1144/GSL.SP.2007.272.01.14.
 
53.
Robin et al. 1993 – Robin, E., Froget, L., Jéhanno, C. and Rocchia, R. 1993. Evidence for a K/T impact event in the Pacific Ocean. Nature 363(6430), pp. 615–617, DOI: 10.1038/363615a0.
 
54.
Şenalp, M. and Tetiker, S. 2020. Sedimentology and Hydrocarbon Potentials of the Late Ordovician glacial deposits on the Arabian Platform and Southeastern Turkey. Turkish Journal of Earth Sciences 29(3), pp. 455–500, DOI: 10.3906/yer-1907-11.
 
55.
Şengör, A.M.C. and Yılmaz, Y. 1981. Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics 75, pp. 181–241, DOI: 10.1016/0040-1951(81)90275-4.
 
56.
Shukolyukov, A. and Lugmair, G. 1998. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282(5390), pp. 927–930, DOI: 10.1126/science.282.5390.927.
 
57.
Signor, P.W. and Lipps, J.H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geological Society of America Special Publication 190, pp. 291–296, DOI: 10.1130/SPE190-P291.
 
58.
Smit, J. and Hertogen, J. 1980. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285(5762), pp. 198–200, DOI: 10.1038/285198a0.
 
59.
Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. (Saunders, A.D. and Norry, M.J. eds.), Magmatism in the Ocean Basins. Geological Society Special Publication pp. 313–345, DOI: 10.1144/GSL.SP.1989.042.01.19.
 
60.
Tetiker, S. 2012. Mineralogical-petrographical and geochemical features of the volcanics-volcanosedimentary rocks of Precambrian from Mardin-Derik area (Mardin-Derik Yöresi Prekambriyen Yaşlı Volkanik-Volkanosedimanter Kayaçların Mineralojik-Petrografik ve Jeokimyasal Özellikleri). Cumhuriyet Earth Science Journal 29(2), pp. 87–106 (in Turkish).
 
61.
Tetiker et al. 2016 – Tetiker, S., Yalçın H. and Bozkaya, Ö. 2016. Diagenesis/Metamorphism History of Lower Triassic Çığlı Group Rocks in Uludere-Uzungeçit (Şırnak) area (Eastern Part of the Southeast Anatolian Autochthone) (Uludere-Uzungeçit (Şırnak) yöresinde (Güneydoğu Anadolu Otoktonu Doğu Bölümü) Alt Triyas yaşlı Çığlı Grubu kayaçlarının diyajenez/metamorfizma tarihçesi). Geological Bulletin of Tukey 59, pp. 323–340 (in Turkish).
 
62.
Tetiker et al. 2017 – Tetiker, S., Yalçın, H. and Butekin, Y. 2017. Clay Mineralogy of Upper Cretaceous-Paleocene aged Germav Formation (Batman-Gercüş) (Üst Kretase-Paleosen yaşlı Germav Formasyonunun kil mineralojisi (Batman-Gercüş)). Batman University Journal of Life Sciences 7(2), pp. 202–215 (in Turkish).
 
63.
Vannucci et al. 1990 – Vannucci, S., Pancani, M.G., Voselli, O. and Cordossi, N. 1990. Mineralogical and geochemical features of the Cretaceous–Tertiary boundary clay in the Barrando del Gredero section (Caravaca, SE-Spain). Chemie der Erde 50, pp. 169–202.
 
64.
Yalçın, H. and Bozkaya, Ö. 2002. Alteration mineralogy and geochemistry of the Upper Cretaceous volcanics around Hekimhan (Malatya), Central East Turkey: An example for the seawater-rock interaction (Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası: deniz suyu-kayaç etkileşimine bir örnek). Cumhuriyet Earth Sciences Journal 19, pp. 81–98.
 
65.
Yusoff et al. 2013 – Yusoff, Z.M., Ngwenya, B.T. and Parsons, I. 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology 349, pp. 71–86, DOI: 10.1016/j.chemgeo.2013.04.016.
 
66.
Zhang et al. 2016 – Zhang, Z., Zheng, G., Takahashi, Y., Wu, C., Zheng, C., Yao, J. and Xiao, C. 2016. Extreme enrichment of rare earth elements in hard clay rocks and its potential as a resource. Ore Geology Reviews 72, pp. 191–212, DOI: 10.1016/j.oregeorev.2015.07.018.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top