ORIGINAL PAPER
Rare earth elements in the Sin Quyen IOCG deposit, North Vietnam
 
More details
Hide details
1
AGH-University of Science and Technology
 
2
Hanoi University of Mining and Geology
 
 
Submission date: 2022-01-20
 
 
Final revision date: 2022-02-16
 
 
Acceptance date: 2022-02-28
 
 
Publication date: 2022-03-23
 
 
Corresponding author
Adam Piestrzynski   

AGH-University of Science and Technology
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(1):17-60
 
KEYWORDS
TOPICS
ABSTRACT
The Sin Quyen deposit is characterized by a high accumulation of rare earth elements (REE). This deposit belongs to the IOCG type copper deposits (Iron Oxide Copper-Gold Deposits). In the deposit, the REE carrier minerals have been identified as follow: allanite, titanite, uraninite, monazite, apatite, chevkinite, aeschynite, bastnäsite, and epidote. In the skarn zone, contents of allanite range from single percentages to 10% in hand-size specimens. Locally, minerals of epidote subgroup which occur in large amounts in the host rocks are important. The studied allanites have concentrations of: REE (14–27 wt%), Ca (9–16 wt%), Al (8–19 wt%), Si (26–34 wt%) and Fe (12–21 wt%). Two populations of allanite are documented, the first is texturally older and probably related to the Ca-K alteration (second stage of crystallization). This population has higher REE concentration ranging from 20 to 27 wt%. The second population is texturally younger and has a lower total REE concentration ranging from 14 to 19.9 wt%, which occur mostly as a rim surrounding the older and likely arose during the K alteration with Cu-Au mineralization (third crystallization). The chemical composition indicates that the studied allanites belong to the Ce-La-ferriallanite family, with low ΣHREE and an average of 0.21 wt.%. A temperature of 355°C which was calculated using a value of δ34S isotopes is interpreted as a temperature of the second crystallization stage of allanite. In the studied deposit, excluding allanite and titanite, the other bearing REE minerals have an insignificant role in the REE balance, since they either have the total content of REE, which is often close to the WDS detection limit (rf. the epidote subgroup), or their only occur at the single points. The content of total REE in accessory uraninites is high and range from 1.311% up to 7.959% with an average value of 4.852%.
ACKNOWLEDGEMENTS
The work was financially supported by UST-AGH Krakow, Grants no 11.11.140.161 and 16.16.140.315 and University of Mining and Geology (UMG), Hanoi, Vietnam, Grant no. 01/2012/HD-HTQTSP. The authors are grateful to G. Kozub PhD and A. Włodek PhD from the Critical Elements Laboratory FGGEP UST-AGH Krakow for the WDS analyses and to T. Ćwiertnia MSc for preparation of the graphics.
METADATA IN OTHER LANGUAGES:
Polish
Pierwiastki ziem rzadkich w złożu IOCG Sin Quyen, Północny Wietnam
REE, allanit, minerały złoża, IOCG, N-Wietnam
Złoże Sin Quyen charakteryzuje się wysoką zawartością pierwiastków ziem rzadkich (REE). Złoże to należy do typu złóż miedzi IOCG (Iron Oxide Copper-Gold Deposits). Zidentyfikowane minerały zawierające REE to: allanit, tytanit, uraninit, monacyt, apatyt, czewkinit, aeschynit, bastnäsyt i epidotyt. W próbkach wielkości dłoni, pobranych ze strefy skarnowej, zawartości allanitu wahają się od pojedynczych do 10%. Lokalnie, minerały podrzędnej grupy epidotytu są ważne z powodu ich licznego występowania. Badane allanity zawierają: REE (14–27 wt%), Ca (9–16% wag.), Al (8–19% wag.), Si (26–34% wag.) i Fe (12–21% wag.). Udokumentowano dwie populacje allanitu, pierwsza jest teksturalnie starsza i prawdopodobnie związana z alteracją Ca-K (drugi etap krystalizacji). Ta populacja ma wyższe koncentracje REE, które są zawarte w przedziale od 20 do 27% wag. Druga populacja jest młodsza i zawiera mniejsze ilości ziem rzadkich (od 14 do 19,9% wag.). Populacja ta występuje głównie w postaci obwódek regeneracyjnych, tworząc zrosty ze starszą populacją i jest związana z alteracją potasową oraz mineralizacją Cu-Au (trzeci etap krystalizacji). Skład chemiczny wskazuje, że badane allanity należą do podgrupy Ce-La-ferriallanitu, o niskiej i średniej koncentracji ΣHREE 0,21% wag. Temperatura krystalizacji 355°C, została obliczona na podstawie wartości δ34S. Ta temperatura jest interpretowana jako temperatura drugiego etapu krystalizacji. W badanym złożu, poza allanitami i tytanitami, inne minerały REE i ich nośniki mają małe znaczenie w bilansie ich zawartości. Na przykład sumaryczna zawartość REE w podrzędnie występującym epidocie, jest na poziomie wykrywalności metody WDS, a inne minerały, takie jak uraninit, czewkinit, aeschynit, czy bastnäsyt występują zbyt rzadko, aby wpływać na bilans tych metali. W akcesorycznym uraninicie, pomierzone zawartości REE wahają się w granicach 1,31–7,96%, przy średniej zawartości 4,85%.
REFERENCES (42)
1.
Armbruster et al. 2006 – Armbruster, T., Bonazzi, P., Akasaka, M., Barmanec, V., Chopin, C., Giere, R., Heuss--Assbichlier, S., Liebsciebscher, A., Menchetti, S., Pany,Y. and Pasero, M. 2006. Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy 18(5), pp. 551–567, DOI: 10.1127/0935-1221/2006/0018-0551.
 
2.
Belperio et al. 2007 – Belperio, A., Flint, R. and Freeman, H. 2007. Predominent Hill: A hematite dominated, iron oxide copper-gold system. Economic Geology 102, pp. 1499–1510.
 
3.
Budzyń et al. 2017 – Budzyń, B., Harlov, D.E., Kozub-Budzyń, G.A. and Majka, J. 2017. Experimental constraints on the relative stabilities of the two systems monazite-(Ce)–allanite-(Ce) – fluor apatite and xenotime-(Y)–(Y.HREE)-rich epidote – (Y.HREE)-rich fluor apatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750°C. Mineralogy and Petrology 111, pp. 183–217, DOI: 10.1007/s00710-016-0464-0.
 
4.
Carter, A. and Clift, P.D. 2008. Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event?, Comptes Rendus. Geosciences 340(2–3), pp. 83-93, DOI: 10.1016/j.crte.2007.08.011.
 
5.
Chen et al. 2015 – Chen, W.T., Zhou, M.F., Gao, J.F. and Hu, R. 2015. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Mineralium Deposita 50, pp. 795–809, DOI: 10.1007/s00126-014-0575-7.
 
6.
Dupuis, C. and Beaudoin, G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita 46(4), pp. 319–335, DOI: 10.1007/s00126-011-0334-y.
 
7.
ESCAP 1990. Report of Economic and Social Commission for Asia and the Pacific.
 
8.
Faure et al. 2014 – Faure, M., Lepvrier, C., Vuong, N.V., Tich, V.V., Lin, W. and Chen, Z. 2014. The South China block-Indochina collision: Where, when, and how? Journal of Asian Earth Sciences 79, pp. 260–274, DOI: 10.1016/j.jseaes.2013.09.022.
 
9.
Fengli et al. 2014 – Fengli, Y., Yafei, W., Shinfu, L., Xiaofen, L., Pengfei, G. and Jiannian, Z. 2014. Comparisons between the Zhuchong Fe-Cu Deposit in Anqing and the IOCG-type Deposits. Acta Geologica Sinica 88(S2), pp. 403–404, DOI: 10.1111/1755-6724.12372_28.
 
10.
Gas’kov et al. 2012 – Gas’kov, V., Tran, T.A., Tran, T.H., Pham, T.D., Nevolko, P.A. and Pham, N.C. 2012. The Sin Quyen Cu-Fe-Au-REE deposit (northern Vietnam) composition and formation conditions. Russian Geology and Geophysics 53(5), pp. 442–456, DOI: 10.1016/j.rgg.2012.03.005.
 
11.
Hao et al. 2021 – Hao, D.V., Phan, T.T., Nguyen, D.T., Piestrzyski, A., Chau, N.D., Pieczonka, J., Ngo, X.D., Tran, V. P., Pham, T.B., Nguyen, V.H., Ngo, V.L., Bui, T.D., Vu, K.D. and Bui, T. C. 2021. Cu-Au mineralization of the Sin Quyen deposit in North Vietnam: a product of Cenozoic left-lateral movement along the Red River shear zone. Ore Geology Reviews 132, pp. 1–21, DOI: 10.1016/j.oregeorev.2021.104065.
 
12.
Hao et al. 2021a – Hao, D.V., Chau, N.D., Piestrzyński, A. and Pieczonka, J. 2021. Relationship between Selected Major, Minor, and Trace Elements in Iron Oxide–Copper–Gold Deposits, an Example from the Unique Sin Quyen Deposit (Lào Cai Province, North Vietnam). Russian Geology and Geophysics 62(11), pp. 1214–1228, DOI: 10.2113/RGG20194156.
 
13.
Hezarkhani, et al. 1999 – Hezarkhani, A., Williams-Jones, A.E. and Gammons, C.H. 1999. Factor controlling a copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita 34, pp. 770–783, DOI: 10.1007/s001260050237.
 
14.
Hitzman, M.W., 2000. Iron oxide-Cu-Au deposits: what, where, when, and why. [In:] Porter, T.M. (ed.), Hydrothermal iron oxide copper–gold & related deposits: a global perspective. Adelaide: PGC, pp. 9–25.
 
15.
Ishihara et al. 2011 – Ishihara, S., Hideo, H., Mihoko, H., Pham, N.C., Pham, T.D. and Tran, T.A. 2011. Mineralogical and chemical characteristics of the allanite-rich copper and iron ores from the Sin Quyen mine, northern Vietnam. Bulletin of the Geological Survey of Japan 62(5/6), pp. 197–209, DOI: 10.9795/bullgsj.62.197.
 
16.
Kuśnir, I. 2000. Mineral resources of Vietnam. Acta Montanistica Slovaca 2, pp. 165–172.
 
17.
Landtwing et al. 2005 – Landtwing, M.R., Pettke, T., Halter, W.E., Heirich, C.A., Redmond, P.B., Einaudi, M.T. and Kuznek, K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluid. The Bingham porphyry. Earth and Planetary Science Letters 235, pp. 229–243, DOI: 10.1016/j.epsl.2005.02.046.
 
18.
Leloup et al. 2007 – Leloup, P.H., Tapponnier, P. and Lacassin, R. 2007. Discussion on the role of the Red River shear zone, Yunan and Vietnam in the continental extrusion of SE Asia. Journal of Geological Society 164, pp. 1253–1260.
 
19.
Lepvrier et al. 2008 – Lepvrier, C., Maluski, H., Nguyen, V.V., Roques, D., Axente, V. and Rangin, C. 2008. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam), 40Ar-39Ar Triasic age and Cretaceous to Cenozoic overprints. Tectonophysics 283, pp. 105–127, DOI: 10.1016/S0040-1951(97)00151-0.
 
20.
Li, X.C. and Zhou, M.F. 2017. Hydrothermal alteration of monazite-(Ce) and chevkinite-(Ce) from the Sin Quyen Fe-Cu-LREE-Au deposit, northwestern Vietnam. American Mineralogists 102(7), pp. 1525–1541, DOI: 10.2138/am-2017-5970.
 
21.
Li, X.C. and Zhou, M.F. 2018. The nature and origin of hydrothermal REE mineralization in the Sin Quyen deposit, Northwestern Vietnam. Economic Geology 113(3), pp. 645–673, DOI: 10.5382/econgeo.2018.4565.
 
22.
Li et al. 2018 – Li, X.C., Zhou, M.F., Chen, W.T., Zhao, X.F. and Tran, M.D. 2018. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu REE-Au-(U) deposit, northwestern Vietnam. Mineralium Deposita 53(3), pp. 399–416, DOI: 10.1007/s00126-017-0746-4.
 
23.
Liem et al. 2016 – Liem, N.V., Dat, N.P., Dieu, B.T., Phai, V.V., Trinh, P.T., Vinh, H.Q. and Phong, T.V. 2016. Assessment of geomorphic processes and active tectonics in Con Voi mountain range area (Northern Vietnam) using the hypsometric curve analysis method. Vietnam Journal Earth Sciences 38(2), pp. 202–216, DOI: 10.15625/0866-7187/38/2/8602.
 
24.
López, A. and Frost, R.L. 2015. Identification of allanite (Ce, Ca, Y)2(Al, Fe3+)3(SiO4)3OH found in marble from Chillagoe, Queensland using Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138, pp. 229–233, DOI: 10.1016/j.saa.2014.11.052.
 
25.
McLean, R.N. 2001. The Sin Quyen iron oxide-copper-gold-rare earth oxide mineralization of North Vietnam. [In:] Porter, T.M. (ed.), Hydrothermal iron oxide copper-gold & related deposits: A global perspective. Adelaide: PGC, pp 293–301.
 
26.
Ngo et al. 2020 – Ngo, X.D., Zhao, X.F., Tran, T.H., Deng, X.D. and Li, J.W., 2020. Two episodes of REE mineralization of the Sin Quyen IOCG deposit, NW Vietnam. Ore Geology Reviews 125, DOI: 10.1016/j.oregeorev.2020.103676.
 
27.
Ohmoto, H. and Rye, R.O. 1979. Isotopes of sulfur and carbon. [In:] Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits 2nd. New York, pp. 509–567.
 
29.
Petrik et al. 1995 – Petrik, I., Broska, I., Lipka, J. and Siman, P. 1995. Granitoid Allanite-(Ce) substitution relations, redox conditions and REE distributions (on an Example of I-Type Granitoids, Western Carpathians, Slovakia). Geologia Carpathica 46, pp. 79–94.
 
30.
Pham et al. 2011 – Pham, N.C., Ishiyama, D., Tran, T.A. and Sera, K. 2011. Mineralogical and geochemical characteristics of rare metals bearing Na Bop, Lung Hoai, Nason and Sin Quyen Base metal deposits, Northern Vietnam. NMCC Annual Report 18, pp. 49–55.
 
31.
Pieczonka et al. 2019 – Pieczonka, J., Piestrzyński, A., Chau, N.D. and Phon, L.K. 2019. Timing of ore mineralization using ore mineralogy and U-Pb dating, Iron Oxide Copper Gold Sin Quyen deposit, North Vietnam. Geological Quarterly 63(4), pp. 861–874, DOI: 10.7306/gq.1507.
 
32.
Pieczonka et al. 2017 – Pieczonka, J., Piestrzyński, A., Phon, L.K., Chau, N.D. and Hao, D.V. 2017. IOCG Sin-Quyen deposit, Lao Cai, N-Vietnam. Mineral resources to discover. 14th Biennial SGA Meeting, Quebec, Canada, pp. 955–959.
 
33.
Pieczonka et al. 2015 – Pieczonka, J., Piestrzyński, A., Phon, L.K., Chau, N.D., Jodłowski, P. and Hao, D.V. 2015. Rare Earth, radioactive and selected elements in the iron oxide copper gold Sin Quyen deposit in North Vietnam. Second International Conference on Scientific Research Cooperation between Vietnam and Poland in Earth Sciences. Bach Khoa Publishing Mouse, Hanoi, pp. 331–353.
 
34.
Pyle et al. 2002 – Pyle, J.M., Spear, F.S. and Wark, D.A. 2002. Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Mineralogy and Geochemistry 48(1), pp. 337–362, DOI: 10.2138/rmg.2002.48.8.
 
35.
Seal, R. 2006. Sulphur isotope geochemistry of sulphide minerals. USGS Staff – Published Research 345. [Online] https://digitalcommons.unl.edu....
 
36.
Shieh, R.S. and Duffy, T.S. 2002. Raman spectroscopy of Co(OH)2 at high pressures: Implications for amorphization and hydrogen repulsion. Physical Review B 66(13), pp. 1–8, DOI: 10.1103/PhysRevB.66.134301.
 
37.
Roger, et al. 2012 – Roger, F., Maluski, H., Lepvrier, C., Vu, V.T. and Paquette, J.L. 2012. LA-ICPMS zircons U/Pb dating of Permo-Trassic and Cretaceous magmatism in Northern Vietnam – Geodynamical implications. Journal of Asian Earth Sciences 48, pp. 72–82, DOI: 10.1016/j.jseaes.2011.12.012.
 
38.
Ta, V.D. 1975. Report of geological surveys and their results performed at the IOCG Sin Quyen deposit in Lao Cai, North Vietnam. Main Department of Geology of Vietnam. 318 (in Vietnamese).
 
39.
Tapponnier et al. 1990 – Tapponnier, P., Lacassin, R., Leloup, H., Scharer, U., Zhong, D., Liu, X., Ji, S., Zhang, L. and Zhong, J. 1990. The Ailaoshan-Red river metamorphic belt: tertiary left-lateral shear between Indochina and South China. Nature 343, pp. 431–437, DOI: 10.1038/343431a0.
 
40.
Tong et al. 1996 – Tong, D.T., Javier, P. and Ta, H.P. 1996. Fist suggest continental connections between the Indochina and South China blocks in Middle Devonian time. Geology 24, pp. 571–574, DOI: 10.1130/0091-7613(1996)024<0571:FSCCBT>2.3.CO;2.
 
41.
Yavuz, F. and Yildirim, D.K. 2018. A windows program for calculation and classification of epidote-supergroup minerals. Periodico di Mineralogia 87, pp. 269–285.
 
42.
Zhao, X.F. and Zhou, M.F. 2011. Fe-Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide–copper–gold) metallogenic province. Mineralium Deposita 46 (7), pp. 731-747, DOI: 10.1007/s00126-011-0342-y.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top