ORIGINAL PAPER
Monazite-bearing post processing wastes and their potential economic significance
 
More details
Hide details
1
University of Warsaw
 
2
Polish Geological Institute
 
 
Submission date: 2019-10-09
 
 
Final revision date: -0001-11-30
 
 
Acceptance date: 2020-03-30
 
 
Publication date: 2020-03-30
 
 
Corresponding author
Krzysztof Szamałek   

University of Warsaw
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2020;36(1):37-58
 
KEYWORDS
TOPICS
ABSTRACT
During the geological prospecting works conducted in 2013 on Bangka Island (Indonesia), high monazite content was identified in the wastes produced during processing of cassiterite deposits. Monazite, among 250 known minerals containing REE, is one of the most important minerals as primary source of REE.The monazite content in this waste is up to 90.60%. The phase composition of the investigated tailing proves that the sources of minerals accompanying the placer sediments tin mineralization are granitoids. The tailing is composed of numerous ore minerals, including monazite, xenotime, zircon, cassiterite, malayaite, struverite, aeschynite-(Y), ilmenite, rutile, pseudorutile and anatase. Monazite grains belong to the group of cerium monazite. Its grains are characterized by high content of Ce2O3 27.12–33.50 wt.%, La2O3 up to 15.46 wt.%, Nd2O3 up to 12.87%. The total REE2O3 + Y content ranges from 58.18 to 65.90 wt.%. Monazite grains observations (SEM-BSE) revealed the presence of porous zones filled with fine phases of minerals with U and Th content. The radiation intensity of 232Th is ATh = 340 ± 10 Bq and 238AU = 114 ± 2 Bq. High content of monazite and other REE minerals indicates that tailing is a very rich, potential source of REEs, although the presence of radioactive elements at the moment is a technological obstacle in their processing and use. The utilization of monazite bearing waste in the Indonesian Islands can be an important factor for development and economic activation of this region and an example of the good practice of circular economy rules.
METADATA IN OTHER LANGUAGES:
Polish
Odpady monacytonośne i ich potencjalne znaczenie gospodarcze
wyspa Bangka, odpady przeróbcze, monacyt, REE
W trakcie geologicznych prac prospekcyjnych prowadzonych w 2013 roku na indonezyjskiej wyspie Bangka stwierdzono wysokie zawartości monacytu w odpadach powstałych po przeróbce osadów kasyterytonośnych. Monacyt jest jednym z najważniejszych pierwotnych źródeł REE wśród 250 znanych minerałów zawierających REE. Zawartość monacytu w badanym odpadzie wynosi do 90,60%. Skład fazowy badanych odpadów wskazuje, że źródłem minerałów towarzyszących w cynonośnych złożach okruchowych były granitoidy. W składzie odpadu przeróbczego, metodą XRD zidentyfikowano obecność licznych minerałów złożowych, wśród nich: monacyt, ksenotym, cyrkon, kasyteryt, malayait, strüveryt, aeschynit-(Y), ilmenit, rutyl, pseudorutyl i anataz. Badania składu chemicznego ziaren monacytu z użyciem EPMA ujawniły, że należy on do grupy monacytu cerowego. Jego ziarna cechują się wysoką zawartością Ce2O3 27,12–33,50% wt., La2O3 do 15,46% wt., Nd2O3 do 12,87%. Całkowita zawartość REE2O3 + Y mieści się w zakresie od 58,18 do 65,90% wt. Obserwacje ziaren monacytu (BSE) ujawniły w nich obecność stref porowatych wypełnionych drobnymi fazami minerałów z udziałem U oraz Th. Aktywność promieniotwórcza 232Th wynosi ATh = 340 ± 10 Bq, a 238U = 114 ± 2 Bq. Wysoka zawartość monacytu oraz innych minerałów nośników REE wskazuje, że odpad przeróbczy stanowi bardzo bogate, potencjalne źródło pierwiastków ziem rzadkich, choć zawartość pierwiastków promieniotwórczych stanowi obecnie przeszkodę technologiczną w ich przetwarzaniu i wykorzystaniu. Wykorzystanie monacytonośnych odpadów z wysp Indonezji może być ważnym czynnikiem rozwoju i aktywizacji gospodarczej tego regionu oraz przykładem dobrej praktyki stosowania zasad gospodarki o obiegu zamkniętym.
REFERENCES (50)
1.
Aleva, G.J.J. 1960. The plutonic igneous rocks from Billiton. Indonesia. Geol. Mijnbouw 39, pp. 427–436.
 
2.
Aryanto, N.C.D. and Kamiludin, U. 2016. The Content of Placer Heavy Mineral and Characteristics of REE at Toboali Coast and Its Surrounding Area. Bangka Belitung Province. Bulletin of the Marine Geology 31(1), pp. 45–54.
 
3.
Ault et al. 2015 – Ault,T., Krahn, S. and Croff, A. 2015. Assessment of the Potential of By-Product Recovery of Thorium to Satisfy Demands of a Future Thorium Fuel Cycle. Nucl. Technol. 189(2), pp. 152–162.
 
4.
Bahari et al. 2007 – Bahari, I., Mohsen, N. and Abdullah, P. 2007. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry. J. Environ. Radioact. 95, pp. 161–170.
 
5.
Clavier et al. 2011 – Clavier, N., Podor, R. and Dacheux, N. 2011. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 31, pp. 941–976.
 
6.
Cobbinget al. 1992 – Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F. and Mallick, D.I.J. 1992. The Granites of the South-East Asian Tin Belt. British Geological Survey, London.
 
7.
Deady et al. 2014 – Deady, E., Mouchos, E., Goodenough, K., Williamson, B. and Wall, F. 2014. Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource? ERES2014 1st Eur. Rare Earth Resour. Conf., Milos, Greece, 4–7 Sept. 2014.
 
8.
Elsner, H. 2013. Heavy Minerals of Economic Importance. BGR: Hannover. Germany, pp. 1–218.
 
9.
European Commission. List of Critical Raw Materials for the EU. 2017. Commun. from Comm. to Eur. Parliam. Counc. Eur. Econ. Soc. Comm. Comm. Reg.
 
10.
Förster, H.J. 1998. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region. Germany. Part I: The monazite-(Ce)-brabantite solid solution series. Am. Mineral. 83(3–4), pp. 259–272.
 
11.
Gambogi, J. 2016. USGS 2016 Minerals Yearbook Thorium [Advance Release]. Publisher: USGS, Reston, Virginia, US, pp 77.1–77.5.
 
12.
Gibson et al. 2004 – Gibson, H.D., Carr, S.D., Brown, R.L. and Hamilton, M.A. 2004. Correlations between chemical and age domains in monazite. and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y-Th-U X-ray mapping. Chem. Geol. 211, pp. 237–260.
 
13.
Golev et al. 2014 – Golev, A., Scott, M., Erskine, P.D., Ali, S.H. and Ballantyne, G.R. 2014. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 41, pp. 52–59.
 
14.
Goodenough et al. 2018 – Goodenough, K. M., Wall, F. and Merriman, D. 2018. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 27, pp. 201–216.
 
15.
Haldar, S.K. 2013. Mineral exploration principles and applications. Elsevier: Waltham, USA, pp. 55–71.
 
16.
Handoko, A.D. and Sanjaya, E. 2018. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia. In IOP Conference Series: Earth and Environmental Science.
 
17.
Harjanto et al. 2013 – Harjanto, S., Virdhian, S. and Afrilinda, E. 2013. Characterization of Indonesia rare earth minerals and their potential processing techniques. Proceedings of the Conference: Rare Earth Elements. October.
 
18.
Hetherington. C.J. and Harlov. D.E. 2008. Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites. Hidra anorthosite massif. southwestern Norway: Mechanics and fluid chemistry. Am. Mineral. 93, pp. 806–820.
 
19.
Hetherington et al. 2010 – Hetherington, C.J., Harlov, D.E. and Budzyń, B. 2010. Experimental metasomatism of monazite and xenotime: mineral stability. REE mobility and fluid composition. Miner. Petrol. 99, pp. 165–184.
 
20.
Hoatson et al. 2011 – Hoatson, D.M., Jaireth, S. and Miezitis, Y. 2011. The major rare-earth-element deposits of Australia: geological setting, exploration, and resources. Geoscience Australia, 204 pp.
 
21.
Hutchison, C.S. and Taylor, D. 1978. Metallogenesis in SE Asia. J. Geol. Soc. London. 135, pp. 405–428.
 
22.
Ikuno T. et al. 2010. Concentration and Geochemical behavior of REE in Hydrothermally Altered and Weathered Granitic Rocks in Southern Thailand and Bangka Island, Indonesia Int. Symposium on Earth Science and Technology, pp. 269–273.
 
23.
Ishihara, S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geol. 27, pp. 293–305.
 
24.
Jaireth et al. 2014 – Jaireth, S., Hoatson, D.M. and Miezitis, Y. 2014. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol. Rev. 62, pp. 72–128.
 
25.
Janots et al. 2012 – Janots, E., Berger, A., Gnos, E. Whitehouse, M., Lewin, E. and Pettke, T. 2012. Constraints on fluid evolution during metamorphism from U-Th-Pb systematics in Alpine hydrothermal monazite. Chem. Geol. 326–327, pp. 61–71.
 
26.
Kanazawa, Y. and Kamitani, M. 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds. 408–412, pp. 1339–1343.
 
27.
Ko Ko, U. 1986. Preliminary synthesis of the geology of Bangka Island, Indonesia. Bull. Geol. Soc. Malaysia 20, pp. 81–96.
 
28.
Mannucci et al. 1986 – Mannucci, G., Diella, V., Gramaccioli, G.M. and Pilati, T. 1986. A comparative study of some pegmatitic and fissure monazite from the Alps. Can. Mineral. 24, pp. 469–474.
 
29.
McDonough, W.F. and Sun, S.S. 1995. The composition of the Earth. Chem. Geol. 67(5), pp. 1050–1056.
 
30.
Metcalfe, I. 2002. Permian tectonic framework and palaeogeography of SE Asia. J. Asian Earth Sci. 20, pp. 551–556.
 
31.
Mohd Salehuddin et al. 2019 – Mohd Salehuddin, A.H.J., Ismail, A.F., Che Zainul Bahri, C.N.A. and Aziman, E.S. 2019. Economic analysis of thorium extraction from monazite. Nucl. Eng. Technol. 51(2), pp. 631–640.
 
32.
Mudd, G.M. and Jowitt, S.M. 2016. Rare earth elements from heavy mineral sands: assessing the potential of a forgotten resource. Applied Earth Science. 125(3), pp. 107–113.
 
33.
Ni et al. 1995 – Ni, Y., Hughes. J.M. and Mariano, A.N. 1995. Crystal chemistry of the monazite and xenotime structures. Am. Mineral. 80, pp. 21–26.
 
34.
Pearce et al. 1984 – Pearce, J.A., Harris, N.B.W. and Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, pp. 956–983.
 
35.
Periravi et al. 2017 – Periravi, M., Ackah, L., Guru, R., Mohanty, M. and Liu, J. 2017. Chemical extraction of rare earth elements from coal ash. Miner. Metall. Process. pp. 17–128.
 
36.
Priem et al. 1975 – Priem, H.N.A., Boelrijk, N.A.I.M., Bon, E.H., Hebeda, E.H., Verdurmen, E.A.T. and Verschure, R.H. 1975. Isotope Geochronology in the Indonesian Tin Belt. Geol. Mijnbouw. 54, pp. 61–70.
 
37.
Rapp, R.P. and Watson, E.B. 1986. Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Mineral. Petrol. 94, pp. 304–316.
 
38.
Schwartz et al. 1995 – Schwartz, M.O., Rajah, S.S., Askury, S.K., Putthapiban, P. and Djaswadi, S. 1995. The Southeast Asian tin belt. Earth-Sci. Rev. 38, pp. 95–293.
 
39.
Schwartz, M.O. and Surjono. 1991. The Pemali tin deposit, Bangka, Indonesia. Miner. Depos. 26, pp. 18–25.
 
40.
Searle et al. 2012 – Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., Wai-Pan Ng, S., Roselee, M.H., Chung, S.-L. and Oliver, G.J.H. 2012. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc. London. 169, pp. 489–500.
 
41.
Simandl, G.J. 2014. Geology and market-dependent significance of rare earth element resources. Miner. Depos. 49, pp. 889–904.
 
42.
Soetopo et al. 2012 – Soetopo, B., Subiantoro, L., Sularto, P. and dan Haryanto, D. 2012. The study of monazite and zircon in quarternary rocks in cerucuk belitung. (Studi Deposit Monasit dan Zirkon Dalam Batuan Kuarter di Daerah Cerucuk Belitung). [Location]. Indonesia.
 
43.
Szamałek, K. and Galos, K. 2016. Metals in Spent Mobile Phones (SMP) – a new challenge for mineral resources management. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 22(4), pp. 45–58.
 
44.
Szamałek et al. 2013 – Szamałek, K., Konopka, G., Zglinicki, K. and Marciniak-Maliszewska, B. 2013. New potential source of rare earth elements. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(4), pp. 59–76.
 
45.
Van Emden et al. 1997 – Van Emden, B., Thornber, M.R., Graham, J. and Lincoln, F.J. 1997. The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can. Mineral 35, pp. 95–104.
 
46.
Wai-Pan Ng et al. 2017 – Wai-Pan Ng, S., Whitehouse, M.J., Roselee, M.H., Teschner,C., Murtadha, S., Oliver, G.J.H., Ghani, A.A. and Chang, S. 2017. Late Triassic granites from Bangka, Indonesia: A continuation of the Main Range granite province of the South-East Asian Tin Belt, J. Asian Earth Sci. 138, pp. 548–561.
 
47.
Wikarno et al. 1984 – Wikarno, U., Suyatna, D.A.D. and Sukardi, S. 1984. Granitoids of Sumatra and the Tin Islands. In Proceedings of: Geology of Tin Deposits in Asia and the Pacific. Selected Papers from the International Symposium on the Geology of Tin Deposits held in Nanning. Nanning, China, October 26–30, Hutchison C.S. eds., Springer. Berlin. Heidelberg.
 
48.
Yasukawa et al. 2015 – Yasukawa, K., Nakamura, K., Fujinaga, K., Machida, S., Ohta, J., Takaya, Y. and Kato, Y. 2015. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochem. J. 49, pp. 621–635.
 
49.
Zhou et al. 2017 – Zhou, B., Li. Z. and Chen C. 2017. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 7(11), pp. 1–14.
 
50.
Zhu, X.K. and O’Nions, R.K. 1999. Monazite chemical composition: some implications for monazite geochronology. Contrib. Mineral. Petrol. 137, pp. 351–363.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top