One-dimensional consolidation parameters of cemented paste backfills
,
 
,
 
 
 
More details
Hide details
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2012;28(4):29-45
 
KEYWORDS
ABSTRACT
Each year, mine and mill operations generate enormous amounts of two waste types - fine-grained tailings and coarse-grained waste rocks. Fine-grained tailings are either discharged in slurry form to surface tailings dams or delivered in cementitious form to underground mine stopes as backfilling, while coarse-grained rocks are typically stored by depositing as a dry material in large dumps. The engineering design of surface tailings dams or underground mine stopes is often controlled by the high compressibility and low shear strength characteristics of fine-grained tailings. Cemented paste backfill CPB indicating saturated, fine-grained backfills can undergo major consolidation settlement during early curing stages. Thus, a better understanding of the rate and magnitude of both differential and total settlement of CPB cured under stress is essential for a proper backfill geotechnical design. The consolidation parameters of CPB can be determined from an improved lab setup called CUAPS (curing under applied pressure system). This setup is capable of simulating the CPB placement and curing conditions, and measuring the consolidation parameters of CPB cured under effective stresses ranging between 0.5 and 400 kPa. In this study, a series of one-dimensional consolidation tests were conducted on CPB samples allowing for examination of the effects of binder type and rate as well as curing time on the compression properties (e.g., coefficient of consolidation cv, compression index Cc, and recompression index Cr) and the final geotechnical index properties (e.g., void ratio ef, water content wf, and degree of saturation Sf). Results showed that as the binder content increases, the initial resistance to consolidation increases. The cv value decreases over the course of time due to evolution of the CPB microstructure generated by the hydration process.
METADATA IN OTHER LANGUAGES:
Polish
Parametry jednowymiarowej konsolidacji podsadzki w postaci cementowej pasty
odpady, szlamy, współczynnik konsolidacji, indeks kompresji, zawartość spoiwa, okres utwardzania
W procesach pozyskania i przeróbki węgla powstają duże ilości odpadów dwóch rodzajów: drobnoziarniste odpady (muły) i gruboziarniste - odpady skały płonnej. Odpady drobnoziarniste (muły) są odprowadzane jako zawiesina na stawy osadowe lub kierowane są do wypełnienia zrobów w podziemiach kopalń, natomiast odpady gruboziarniste zazwyczaj są składowane w postaci suchego materiału na hałdach. Składowiska tych odpadów, zarówno powierzchniowe jak i podziemne, wymagają częstych kontroli ze względu na dużą kompresję (ściśliwość) oraz płynięcie (ścinanie). Drobnoziarniste odpady nasycone cementem CPB (Cement Paste Backfill) mogą we wczesnych stadiach utwardzania ulegać konsolidacji w procesie osiadania w zrobach. Aby przygotować odpowiednią mieszaninę do wypełnienia zrobów konieczna jest dobra znajomość całkowitej wielkości i różnic w osiadaniu CPB utwardzanych w warunkach ciśnienia. Parametry konsolidacji CPB mogą być badane w warunkach laboratoryjnych z wykorzystaniem ulepszonego zestawu aparaturowego o nazwie CUAPS (Curing Under Applied Pressure System) - utwardzanie pod ciśnieniem. Taka konfiguracja jest w stanie symulować warunki utwardzania CPB, a więc pomiar parametrów konsolidacji przy efektywnych naprężeniach w zakresie od 0,5 do 400 kPa. W tym przypadku, seria jednowymiarowych prób konsolidacji prowadzona była na próbkach PCB, umożliwiających zbadanie wpływu rodzaju spoiwa i czasu utwardzania na właściwości kompresji (np. współczynnik konsolidacji Cv, wskaźnik kompresji Cc i wskaźnik dekompresji Cr) oraz końcowe właściwości geotechniczne (np. wskaźnik porowatości ef, zawartość wody wf i stopień nasycenia Sf). Wyniki pokazują, że ze wzrostem zawartości spoiwa, wzrasta odporność na konsolidację. Wartość współczynnika konsolidacji cv maleje w miarę upływu czasu w wyniku zmiany mikrostruktury CPB wywołanej hydratacją.
REFERENCES (36)
1.
Aubertin et al. 2002 - Aubertin M., Bussière B., Bernier L., 2002 - Environnement et gestion des résidus miniers, Presses Internationales Polytechnique, Montréal, Quebec, Canada.
 
2.
Belem et al. 2000 - Belem T., Benzaazoua M., Bussière B., 2000 - Mechanical behavior of cemented paste backfill. [In:] The 53rd Canadian Geotechnical Conference, Montreal, Quebec, Canada, pp. 373-380.
 
3.
Belem et al. 2002 - Belem T., Benzaazoua M., Bussière B., Dagenais A., 2002 - Effects of settlement and drainage on strength development within mine paste backfill. [In:] Tailings and Mine Waste'01, Vail, Forth Collins, Colorado, USA, pp. 139-148.
 
4.
Belemet al. 2006 - Belem T., El Aatar O., Bussière B., Benzaazoua M., Fall M., Yilmaz E., 2006 - Characterization of self-weight consolidated paste backfill. [In:] Paste and Thickened Tailings'06, Limerick, Ireland, ACG, pp. 333-345.
 
5.
Belem T., Benzaazoua M., 2008. Predictive models for prefeasibility cemented paste backfill mix design. [In:] Post-Mining 2008, February 6-8, Nancy, France, pp. 1-13.
 
6.
Benzaazoua et al. 1999 - Benzaazoua M., Ouellet J., Servant S., Newma n P., Verburg R., 1999 - Cementitious backfill with high sulfur content: physical, chemical and mineralogical characterization. Cement and Concrete Research, Vol. 29, No. 5, pp. 719-725.
 
7.
Benzaazoua et al. 2004 - Benzaazoua M., Fall M., Belem T., 2004 - A contribution to understanding the hardening process of cemented paste backfill. Minerals Engineering, Vol. 17, No. 2, pp. 141-152.
 
8.
Benzaazoua et al. 2006 - Benzaazoua M., Belem T., Yilmaz E., 2006 - Novel lab tool for paste backfill. Canadian Mining Journal, Vol. 127, No. 3, pp. 31-32.
 
9.
Bussière B. 1993 - Evaluation des propriétés hydro-géologiques de résidus miniers utilisés comme barrières de recouvrement. [In:] M.Sc. Thesis, Université de Montréal, Canada, pp. 1-171.
 
10.
Bussière B., 2007 - Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geo-environmental disposal approaches. Canadian Geotechnical Journal, Vol. 44, No. 9, pp. 1019-1052.
 
11.
Cayouette J., 2003 - Optimization of the paste backfill plant at Louvicourt mine. CIM Bulletin, Vol. 96, No. 1075, pp. 51-57.
 
12.
Das B. M., 2002 - Soil mechanics laboratory manual, 6th ed., Oxford University Press, New York.
 
13.
Ercikdi et al. 2009 - Ercikdi B., Cihangir F., Kesimal A., Deveci H., Alp I., 2009 - Utilization of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Cement and Concrete Composites, Vol. 31, No. 4, pp. 268-274.
 
14.
Fahey et al. 2010 - Fahey M., Helinski M., Fourie A., 2010 - Consolidation in accreting sediments: Gibson's solution applied to backfilling of mine stopes. Geotechnique, Vol. 60, No. 11, pp. 877-882.
 
15.
Fall et al. 2008 - Fall M., Benzazua M., Saa E., 2008 - Mix proportioning of underground cemented tailings backfill. Tunnelling and Underground Space Technology, Vol. 23, No. 1, pp. 80-90.
 
16.
Helinski et al. 2007 - Helinski M., Fahey F., Fourie A. B., 2007 - Numerical modeling of cemented paste fill deposition. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 13, No. 10, pp. 1308-1319.
 
17.
Godbout J., 2005 - Évolution des propriétés hydriques des remblais miniers cimentés en pâte durant le curage. [In:] M.Sc. Thesis, Ecole Polytechnique de Montréal, Québec, Canada, pp. 1-213.
 
18.
Grabinsky M., Bawden W. F., 2007 - In situ measurements for geo-mechanical design of cemented paste backfill systems. CIM Bulletin, Vol. 100, No. 1103, pp. 1-8.
 
19.
Hassani F. P., Archibald J. F., 1998. Mine backfill hand book. CIM, Montreal, Quebec, Canada.
 
20.
Hsu T. W., Lu S., 2006 - Behavior of one-dimensional consolidation under time-dependent loading. Journal of Engineering Mechanics, Vol. 132, No. 4, pp. 457-462.
 
21.
Khalili et al. 2007 - Khalili A., Wijewickreme D., Wilson W., 2007. Consolidation characteristics of mixes of waste rocks and tailings. [In:] The 60th Canadian Geotechnical Conference, Ottawa, Ontario, Canada.
 
22.
Kesimal et al. 2005 - Kesimal A., Yilmaz E., Ercikdi B., Alp I., Deveci H., 2005 - Effect of properties of tailings and binder on the short and long terms strength and stability of cemented paste backfill. Journal of Materials Letters, Vol. 59, No. 28, pp. 3703-3709.
 
23.
Landriault D., 2001 - Backfill in underground mining: Underground mining methods engineering basics and case studies, Littleton, Colorado, USA, Chapter 69, pp. 601-614.
 
24.
Lea F. M., Hewlett P. C., 2000 - Lea's chemistry of cement and concrete, 4th ed., B-H College, UK.
 
25.
le Roux et al. 2002 - l e Roux K. A., Bawden W. F., Grabinsky M. W., 2002 - Assessing the interaction between hydration rate and fill rate for cemented paste backfill. [In:] The 55th Canadian Geotechnical Conference, Niagara Falls, Ontario, Canada, pp. 427-432.
 
26.
le Roux K. A., 2004 - In situ properties and liquefaction potential of cemented paste backfill. [In:] Ph.D. Thesis, University of Toronto, Ontario, Canada, pp. 1-271.
 
27.
Ouellet et al. 2007 - Ouellet S., Bussière B., Aubertin M., Benzazoua M., 2007 - Microstructural evolution of cemented paste backfill: MIP results. Cement and Concrete Research, Vol. 37, No. 5, pp. 1654-1665.
 
28.
Page D. T., 2009 - Damage to cement bonds during hydration of paste backfill. [In:] Final Year Undergraduate Thesis, The University of Western Australia, Perth, Australia.
 
29.
Potvin et al. 2005 - Potvin Y., Thomas E., Fourie A., 2005 - Hand Book on Mine Fill. (Western Australia: ACG).
 
30.
Tariq A., Nehdi M., 2007 - Developing durable paste backfill from sulphidic tailings. Waste and Resource anagement, Vol. 160, No. 4, pp. 155-166.
 
31.
Yilmaz et al. 2006 - Yilmaz E., El Aatar O., Belem T., Benzaazoua M., Bussière B., 2006 - Effect of consolidation on the performance of cemented paste backfill. [In:] Underground Support'06, AMQ, Val d'Or, Quebec, Canada, pp. 1-14.
 
32.
Yilmaz et al. 2010 - Yilma z E., Belem T., Benzaazoua M., Bussière B., 2010 - Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. Geotechnical Testing Journal, Vol. 33, No. 5, pp. 351-362.
 
33.
Yilmaz et al. 2011 - Yilmaz E., Belem T., Benzaazoua M., Kesimal A., Ercikdi B., Cihangir F., 2011 - Use of high-density paste backfill for safe disposal of copper/zinc mine tailings. Mineral Resources Management, Vol. 27, No. 3, pp. 81-94.
 
34.
Yilmaz E., 2010 - Investigating the consolidation behavior, hydro-mechanical andmicro-structural properties of cemented paste backfills using the versatile CUAPS apparatus. [In:] PhD Thesis, Université du Québec en Abitibi-Témiscamingue (UQAT), Québec, Canada, pp. 1-450.
 
35.
Yilmaz E., 2011 - Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Mineral Resources Management, Vol. 27, No. 2, pp. 89-112.
 
36.
Yumlu M., Guresci M., 2007 - Paste backfill bulkhead monitoring: A case study from Inmet's Cayeli Mine, Turkey. CIM Bulletin, Vol. 100, No. 1103, pp. 1-10.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top