ORIGINAL PAPER
Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden
More details
Hide details
1
Swedish Transport Administration
2
Lund University, Division of Building Materials
3
Université Libre de Bruxelles
Submission date: 2022-02-21
Final revision date: 2022-04-11
Acceptance date: 2022-05-18
Publication date: 2022-06-28
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2022;38(2):147-168
KEYWORDS
TOPICS
ABSTRACT
This paper presents an experimental study on the leaching of heavy metals, toxic chemicals and persistent organic pollutants (POPs) – PAH, PCB and HCB – from soil dredged from the coastal area of Västernorrland in northern Sweden. The soil was stabilized with cement/slag. Samples were subjected to modified surface leaching and shake tests using technical standards of the Swedish Geotechnical Institute (SGI). The experiments were performed using different blends of binding agents (30/70, 50/50, 70/30) and binder quantities (120 and 150 kg/m3) to analyze their effects on leaching. Soil properties, tools, and workflow are described. Binders included Portland cement and ground granulated blast furnace slag (GGBFS). Samples were tested to evaluate the min/max contents of pollutants (µg/l) for heavy metals (As, Ba, Pb, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, S, V, Zn) and the hydrocarbon fraction index in the excess water. The leaching of heavy metals and POPs was assessed in sediments after the addition of the binder. The comparison was made against the two mixes (cement/slag in 30/70% and high/low binder with low/high water ratio). The results showed that 70% slag decreases the leaching of heavy metals and POPs. The equilibrium concentrations of DOC and heavy metals at L/S 10 (μg/l) were measured during the shake experiments to compare their levels in the groundwater that was used as a leachate. The leached content was assessed at L/S 10 in the upscaling experiments using four samples for PAH, PCB and various fractions of hydrocarbons: C10–C40, C10–C12, C12–C16 and C35–C40. The shake test showed a decrease in the leaching of heavy metals and POP substances from the soil subjected to stabilization by a higher amount of slag added as a binder. A binder blend with 30% cement and 70% of GGBFS showed the best performance.
ACKNOWLEDGEMENTS
We acknowledge technical contribution of staff personnel during geotechnical works: Annika Åberg, Sweco, Anna-Karin Hjalmarsson, Miljökraft, Magnus Jinnerot, Swedish Cellulose Company (Svenska Cellulosa Aktiebolaget SCA) for sampling. The SCA is responsible for the uptake of soil sediments and test experiments with specimens. We are thankful to the two anonymous reviewers for reading the manuscript and commenting on this work.
METADATA IN OTHER LANGUAGES:
Polish
Zanieczyszczenie gleby metalami ciężkimi i trwałymi zanieczyszczeniami organicznymi (WWA, PCB i HCB) na obszarze przybrzeżnym Västernorrland, Szwecja
gleba, Morze Bałtyckie, zanieczyszczenia morskie, inżynieria lądowa, geotechnika
Niniejszy artykuł przedstawia eksperymentalne badania dotyczące wymywania metali ciężkich, toksycznych chemikaliów i trwałych zanieczyszczeń organicznych (TZO): WWA, PCB i HCB z pobranej gleby na obszarze przybrzeżnym Västernorrland w północnej Szwecji. Gleba była stabilizowana cementem/żużlem. Próbki poddano zmodyfikowanym próbom wypłukiwania powierzchniowego i wstrząsom z zastosowaniem standardów technicznych Szwedzkiego Instytutu Geotechnicznego (SGI). Eksperymenty przeprowadzono przy użyciu różnych mieszanek środków wiążących (30/70, 50/50, 70/30) i ilości środka wiążącego (120 i 150 kg/m3) w celu przeanalizowania ich wpływu na ługowanie. Opisano właściwości gleby, narzędzia i przebieg pracy. Spoiwa obejmowały cement portlandzki i mielony granulowany żużel wielkopiecowy (GGBFS). Próbki zostały przetestowane w celu określenia min/max zawartości zanieczyszczeń (µg/l) dla metali ciężkich (As, Ba, Pb, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, S, V, Zn) i wskaźnika frakcji węglowodorowej w nadmiarze wody. Wymywanie metali ciężkich i TZO oceniano w osadach po dodaniu lepiszcza. Porównania dokonano dla dwóch mieszanek (cement/żużel w 30/70% i spoiwo o wysokiej/niskiej zawartości z niskim/wysokim stosunkiem wody). Wyniki wykazały, że 70% żużel zmniejsza wymywanie metali ciężkich i TZO. Stężenia równowagowe DOC i metali ciężkich przy L/S 10 (μg/l) mierzono podczas eksperymentów z wytrząsaniem w celu porównania ich poziomów w wodzie gruntowej stosowanej jako odciek. Zawartość wyługowaną oszacowano na poziomie L/S 10 w eksperymencie upscalingu (zwiększenia skali) przy użyciu 4 próbek WWA, PCB i różnych frakcji węglowodorów: C10–C40, C10–C12, C12–C16 i C35–C40. Próba wstrząsowa wykazała zmniejszenie wymywania metali ciężkich i substancji TZO z gleby poddanej stabilizacji większą ilością żużla dodawanego jako spoiwo. Najlepszą wydajność wykazała mieszanka spoiwowa zawierająca 30% cementu i 70% GGBFS.
REFERENCES (32)
1.
Achten, C. and Hofmann, T. 2009. Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. The Science of the Total Environment 407(8), pp. 2461–2473, DOI: 10.1016/j.scitotenv.2008.12.008.
2.
Bandowe et al. 2021 – Bandowe, B.A.M., Shukurov, N., Leimer, S., Kersten, M., Steinberger, Y. and Wilcke, W. 2021. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment. Environmental Geochemistry and Health 43, pp. 4847–486, DOI: 10.1007/s10653-021-00974-3.
3.
Bayraktar et al. 2015 – Bayraktar, A.C., Avşar, E., Toröz, İ., Alp, K. and Hanedar, A. 2015. Stabilization and solidification of electric arc furnace dust originating from steel industry by using low grade MgO. Archives of Environmental Protection 41(4), pp. 62–66, DOI: 10.1515/aep-2015-0040.
4.
Chabukdhara, M. and Nema, A.K. 2012. Heavy Metals in Water, Sediments, and Aquatic Macrophytes: River Hindon, India. Journal of Hazardous, Toxic, and Radioactive Waste 16(3), pp. 273–281, DOI: 10.1061/(ASCE)HZ.2153-5515.0000127.
5.
Feng et al. 2012 – Feng, S., Zhang, N., Liu, H., Du, X. and Liu, Y. 2012. Comprehensive Analysis of Heavy Metals in Sediments Contaminated by Different Pollutants. Journal of Environmental Engineering 138(4), pp. 483–489, DOI: 10.1061/(ASCE)EE.1943-7870.0000486.
6.
Gabryszewska, M. and Gworek, B. 2021. Influence of former industrial waste landfill in central Poland on PCBs content in the environment. Archives of Environmental Protection 47(2), pp. 61–69, DOI: 10.24425/aep.2021.137278.
7.
Gan et al. 2009 – Gan, S., Lau, E.V. and Ng, H.K. 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials 172(2–3), pp. 532–549, DOI: 10.1016/j.jhazmat.2009.07.118.
8.
Grochowska et al. 2021 – Grochowska, J.K., Tandyrak, R., Augustyniak, R., Łopata, M., Popielarczyk, D. and Templin, T. 2021. How we can disrupt ecosystem of urban lakes – pollutants of bottom sediment in two shallow water bodies. Archives of Environmental Protection 47(4), pp. 40–54, DOI: 10.24425/aep.2021.139501.
9.
Johansson et al. 1995 – Johansson, K., Andersson, A. and Andersson, T. 1995. Regional accumulation pattern of heavy metals in lake sediments and forest soils in Sweden. Science of The Total Environment 160–161, pp. 373–380, DOI: 10.1016/0048-9697(95)04370-G.
10.
Kumar et al. 2014 – Kumar, B., Verma, V.K., Singh, S.K., Kumar, S., Sharma, C.S. and Akolkar, A.B. 2014. Polychlorinated Biphenyls in Residential Soils and their Health Risk and Hazard in an Industrial City in India. Journal of Public Health Research 3(252), pp. 68–74, DOI: 10.4081/jphr.2014.252.
11.
Leivuori, M. and Niemistö, L. 1995. Sedimentation of trace metals in the Gulf of Bothnia. Chemosphere 31(8), pp. 3839–3856, DOI: 10.1016/0045-6535(95)00257-9.
12.
Lemenkov, V. and Lemenkova, P. 2021a. Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils With Changed Porosity and Density. Journal of Applied Engineering Sciences 11(2), pp. 113–120, DOI: 10.2478/jaes-2021-0015.
13.
Lemenkov, V. and Lemenkova, P. 2021b. Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports 31(2), pp. 63–84, DOI: 10.2478/ceer-2021-0020.
14.
Lima et al. 2005 – Lima, A.L.C., Farrington, J.W. and Reddy, C.M. 2005. Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment – A Review. Environmental Forensics 6(2), pp. 109–131, DOI: 10.1080/15275920590952739.
15.
Lindh, P. 2001. Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement 5(1), pp. 23–34, DOI: 10.1680/grim.2001.5.1.23.
16.
Lindh, P. and Åberg, A. 2017. Effektiv optimering av bindemedelsblandningar för stabilisering. Bygg & Teknik 1(17), pp. 53–55.
17.
Lindh, P. and Winter, M.G. 2003. Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology 36(4), pp. 321–330, DOI: 10.1144/1470-9236/03-018.
18.
Lindh, P. and Lemenkova, P. 2021a. Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research 65(2), pp. 39–62, DOI: 10.2478/ncr-2021-0012.
19.
Lindh, P. and Lemenkova, P. 2021b. Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica 15(4), pp. 236–248, DOI: 10.2478/ama-2021-0030.
20.
Łyszczarz et al. 2020 – Łyszczarz, S., Błońska, E. and Lasota, J. 2020. The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland). Archives of Environmental Protection 46(3), pp. 69–79, DOI: 10.24425/aep.2020.134537.
21.
Moghal et al. 2020 – Moghal, A.A.B., Ashfaq, M., Al-Shamrani, M.A. and Al-Mahbashi, A. 2020. Effect of Heavy Metal Contamination on the Compressibility and Strength Characteristics of Chemically Modified Semiarid Soils. Journal of Hazardous, Toxic, and Radioactive Waste 24(4), DOI: 10.1061/(ASCE)HZ.2153-5515.0000527.
22.
Morillo et al. 2007 – Morillo, E., Romero, A.S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., Davidson, C.M., Hursthouse, A.S. and Villaverde, J. 2007. Soil pollution by PAHs in urban soils: a comparison of three European cities. Journal of Environmental Monitoring 9(9), pp. 1001–1008, DOI: 10.1039/B705955H.
23.
Renner et al. 1998 – Renner, R.M., Glasby, G.P. and Szefer, P. 1998. Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea off Poland. Applied Geochemistry 13(3), pp. 313–318, DOI: 10.1016/S0883-2927(97)00100-5.
24.
Ryden et al. 2006 – Ryden, N., Ekdahl, U. and Lindh, P. 2006. Quality control of cement stabilised soil using non-destructive seismic tests. DGZfp – Proceedings BB102-CD, Lecture 34, Advanced Testing of Fresh Cementitious Materials, Stuttgart. The German Society for Non-Destructive Testing, Berlin, Germany.
25.
Siregar et al. 2020 – Siregar, A.S., Sulistyo, I. and Prayogo, N.A. 2020. Heavy metal contamination in water, sediments and Planiliza subviridis tissue in the Donan River, Indonesia. Journal of Water and Land Development 45, pp. 157–164, DOI: 10.24425/jwld.2020.133057.
26.
Smal et al. 2015 – Smal, H., Ligęza, S., Wójcikowska-Kapusta, A., Baran, S., Urban, D., Obroślak, R. and Pawłowski, A. 2015. Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland). Archives of Environmental Protection 41(4), pp. 67–80, DOI: 10.1515/aep-2015-0041.
27.
Vaalgamaa, S. and Conley, D.J. 2008. Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science 76(1), pp. 45–56, DOI: 10.1016/j.ecss.2007.06.007.
28.
Vallius, H. 2014. Heavy metal concentrations in sediment cores from the northern Baltic Sea: Declines over the last two decades. Marine Pollution Bulletin 79(1–2), pp. 359–364, DOI: 10.1016/j.marpolbul.2013.11.017.
29.
White, K.D. and Tittlebaum, M.E. 1985. Metal Distribution and Contamination in Sediments. Journal of Environmental Engineering 111(2), pp. 161–175, DOI: 10.1061/(ASCE)0733-9372(1985)111:2(161).
30.
Wong, C.S.C. and Li, X. 2003. Analysis of Heavy Metal Contaminated Soils. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 7(1), pp. 12–18, DOI: 10.1061/(ASCE)1090-025X(2003)7:1(12).
31.
Zaborska et al. 2011 – Zaborska, A., Carroll, J., Pazdro, K. and Pempkowiak, J. 2011. Spatio-temporal patterns of PAHs, PCBs and HCB in sediments of the western Barents Sea. Oceanologia 53(4), pp. 1005–1026, DOI: 10.5697/oc.53-4.1005.
32.
Zalewska et al. 2015 – Zalewska, T., Woroń, J., Danowska, B. and Suplińska, M. 2015. Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57(1), pp. 32–43, DOI: 10.1016/j.oceano.2014.06.003.