ORIGINAL PAPER
Synthesis of Na-LSX type zeolite from Polish fly ash
Zdzisław Adamczyk 1  
,   Magdalena Cempa 2  
,   Barbara Białecka 2  
 
More details
Hide details
1
Silesian University of Technology
2
Central Mining Institute
CORRESPONDING AUTHOR
Magdalena Cempa   

Central Mining Institute
Submission date: 2020-06-02
Final revision date: 2020-07-10
Acceptance date: 2020-08-25
Publication date: 2020-09-29
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2020;36(3):145–166
 
KEYWORDS
TOPICS
ABSTRACT
The paper presents the results of hydrothermal zeolitization of fly ash from hard coal combustion in one of the Polish power plants. The synthesis was carried out using various NaOH fly ash mass ratio (3.0, 4.0 and 6.0) and the effect of NaOH concentration in the activating solution on composition of synthesized sample was tested. The process was carried out under the following permanent conditions temperature: 90°C, time – 16 hours, water solution of NaOH (L)/fly ash (g) ratio – 0.025. In the studied fly ash the dominant chemical components were SiO2 and Al2O3, while the main phase components were mullite, quartz and hematite, and a significant share of amorphous substance (glass and unburnt organic substance). After hydrothermal synthesis, the presence of unreacted fly ash phases was found in the products, as well as new phases, the quality and quantity of which depend on the NaOH to fly ash mass ratio used for synthesis: for ratio 3.0 – Na-LSX type zeolite and hielscherite, for ratio 4.0 – Na-LSX type zeolite, hielscherite and hydrosodalite, for ratio 6.0 – hydrosodalite and hielscherite. The grains in all products of synthesis are poly-mineral. However, it was found that the new phases, overgrowing the unreacted phase components of fly ash, crystallize in a certain order. Hielscherite is the first crystallizing phase, on which the Na-LSX type zeolite crystallizes then, and the whole is covered by hydrosodalite. In the products of synthesis, the share of sodium-containing phases (the Na-LSX type zeolite and hydrosodalite) increases with the increasing concentration of NaOH in the solution used for the process.
METADATA IN OTHER LANGUAGES:
Polish
Synteza zeolitu Na-LSX na bazie polskiego popiołu lotnego
popiół lotny, Na-LSX zeolit, hydrosodalit, hielscherit
W pracy przedstawiono wyniki badań hydrotermalnej zeolityzacji popiołu lotnego pochodzącego ze spalania węgla kamiennego w jednej z polskich elektrowni. Syntezę przeprowadzono przy różnych stosunkach wagowych NaOH/popiół lotny (3,0, 4,0 i 6,0) i badano wpływ stężenia NaOH w roztworze aktywującym na skład zsyntetyzowanej próbki. Proces był prowadzony w następujących warunkach: temperatura syntezy – 90°C, czas syntezy – 16 godzin, stosunek roztworu NaOH (L)/popiół lotny (g) – 0,025. W badanym popiele lotnym dominującymi składnikami chemicznymi były SiO2 i Al2O3, natomiast głównymi składnikami fazowymi były mullit, kwarc, hematyt oraz stwierdzono znaczny udział substancji amorficznej (szkliwo i nieprzepalona substancja organiczna). W produktach po hydrotermalnej syntezie stwierdzono obecność nieprzereagowanych faz popiołu lotnego, a także nowe fazy, których jakość i ilość uzależnione są od stosunku masowego NaOH do popiołu lotnego: dla stosunku 3.0 – zeolit typu Na-LSX i hielscherite, dla stosunku 4.0 – zeolit typu Na-LSX, hielscherite i hydrosodalit, dla stosunku 6.0 – hydrosodalit i hielscherite. Ziarna we wszystkich produktach syntezy są polimineralne. Stwierdzono jednak, że nowe fazy, obrastające nieprzereagowane składniki fazowe popiołu lotnego, krystalizują w określonej kolejności. Hielscherite jest pierwszą krystalizującą fazą, na którym krystalizuje zeolit typu Na-LSX i całość oblepia hydrosodalit. W produktach syntezy udział faz zawierających sód (zeolit typu Na-LSX i hydrosodalit) wzrasta wraz ze wzrostem stężenia NaOH w roztworze użytym w procesie.
 
REFERENCES (70)
1.
Adamczyk, Z. and Makosz, E. 2014. Zeolitization of fly ash using 1M solution of NaOH, [In:] Pozzi, M. ed. Geochemia i geologia środowiska terenów uprzemysłowionych. Gliwice: PANOVA, pp. 68–80 (in Polish).
 
2.
Bandura et al. 2017 – Bandura, L., Kołodyńska, D. and Franus, W. 2017. Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fy ash. Process Safety and Environmental Protection 109, pp. 214–223.
 
3.
Basaldella, E.I. and Tara, J.C. 1995. Synthesis of LSX zeolite in the Na/K system: Influence of the Na/K ratio Zeolites 15, pp. 243–246.
 
4.
Belviso, C. 2018. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science 65, pp. 109–135.
 
5.
Bolewski, A. and Manecki, A. 1993. Detailed minerology (Minerologia szczegółowa). Warszawa: PAE (in Polish).
 
6.
BP 2018 – BP. Statistical Review of World Energy, 2018. London.
 
7.
Bukalak et al. 2013 – Bukalak, D., Majchrzak-Kucęba, I. and Nowak, W. 2013. Assessment of the sorption capacity and regeneration of carbon dioxide sorbents using thermogravimetric methods. Journal of Thermal Analysis and Calorimetry 113, pp. 157–160.
 
8.
Bukhari et al. 2015 – Bukhari, S.S., Behin, J., Kazemian, H. and Rohani, S. 2015. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 140, pp. 250–266.
 
9.
Cempa et al. 2018 – Cempa, M., Adamczyk, Z. and Białecka, B. 2018. Florencite in fly ash from the Rybnik Power plant (Poland). [In:] Science and Technologies in Geology, Exploration and Mining 18(1.4). Albena, 2–8 July, 2018. Bulgaria: 18th International Multidisciplinary Scientific Geoconference SGEM, pp. 75–82.
 
10.
Channabasavaraj, W. and Ramalinga, R. 2017. A review on characterization and application of fly ash zeolites. International Journal of Development Research 7(8), pp.14294–14300.
 
11.
Chen et al. 2017 – Chen, H., Wang, W., Ding, J., Wei, X. and Lu, J. 2017. CO2 Adsorption Capacity of FAU Zeolites in Presence of H2O: A Monte Carlo Simulation Study. Energy Procedia 105, pp. 4370–4376.
 
12.
Collins et al. 2020 – Collins, F., Rozhkovskaya, A., Outram, J.G. and Millar, G.J. 2020. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials 291, 109667.
 
13.
Costa et al. 2020 – Costa, J.A.S., de Jesus, R.A., Santos, D.O., Mano, J.F., Romão, L.P.C. and Paranhos, C.M. 2020. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials 291, 109698.
 
14.
Czuma et al. 2020a – Czuma, N., Casanova, I., Baran, P., Szczurowski, J. and Zarębska, K. 2020a. CO2 sorption and regeneration properties of fly ash zeolites synthesized with the use of differentiated methods. Scientific Reports 10, 1825.
 
15.
Czuma et al. 2020b – Czuma, N., Franus, W., Baran, P., Ćwik, A. and Zarębska, K. 2020b. SO2 sorption properties of fly ash zeolites. Turkish Journal of Chemistry 44, pp. 155–167.
 
16.
Daems et al. 2006 – Daems, I., Leflaive, P., Methivier, A., Baron, G. V. and Denayer, J.F.M. 2006. Influence of Si:Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics. Microporous and Mesoporous Materials 96, pp. 149–156.
 
17.
Derkowski et al. 2006 – Derkowski, A., Franus, W., Beran, E. and Czímerová, A. 2006. Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol. 166, pp. 47–54.
 
18.
Derkowski et al. 2007 – Derkowski, A., Franus, W., Waniak-Nowicka, H. and Czímerová, A. 2007. Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. Int. J. Miner. Process. 82(2), pp. 57–68.
 
19.
De Smedt et al. 2005 – De Smedt, C., Ferrer, F., Leus, K. and Spanoghe, P. 2005. Removal of Pesticides from Aqueous Solutions by Adsorption on Zeolites as Solid Adsorbents. Adsorption Science and Technology 33(5), pp. 457–485.
 
20.
Donkor, E.A. and Buamah, R. 2016. Defluorination of drinking water using surfactant modified zeolites. Journal of Science and Technology 36(1), pp. 15–21.
 
21.
Eisenwagen, S. and Pavelić, K. 2020. Potential Role of Zeolites in Rehabilitation of Cancer Patients. Arch Physiother Rehabil 3(2), pp. 29–40.
 
22.
Erdem et al. 2004 – Erdem, E., Karapinar, N. and Donat, R. 2004. The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science 280(2), pp. 309–314.
 
23.
Esposito et al. 2004 – Esposito, S., Ferone, C., Pansini, M., Bonaccorsi, L. and Proverbio, E. 2004. A comparative study of the thermal transformations of Ba-exchanged zeolites A, X and LSX. Journal of the European Ceramic Society 24(9), pp. 2689–2697.
 
24.
Fan et al. 2015 – Fan, M., Sun, J., Bai, S. and Panezai, H. 2015. Size effects of extraframework monovalent cations on the thermal stability and nitrogen adsorption of LSX zeolite. Microporous and Mesoporous Materials pp. 44–49.
 
25.
Ferretti et. al. 2020 – Ferretti, G., Galamini, G., Medoro, V., Coltorti, M., Di Giuseppe, D. and Faccini, B. 2020. Impact of Sequential Treatments with Natural and Na-Exchanged Chabazite Zeolite-Rich Tuff on Pig-Slurry Chemical Composition. Water 12, 310.
 
26.
Franus, W. 2012. Characterization of X-type Zeolite Prepared from Coal Fly Ash. Polish Journal of Environmental Studies 21(2), pp. 337–343.
 
27.
Franus et al. 2014 – Franus, W., Wdowin, M. and Franus, M. 2014. Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment 186, pp. 5721–5729.
 
28.
Franus, W. and Wdowin, M. 2010. Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi– Mineral Resources Management 26(4), pp. 133–148.
 
29.
Franus, W. and Wdowin, M. 2011. Application of F class fly ash to production of zeolitic material at semi-technical scale (Wykorzystanie popiołów lotnych klasy F do produkcji materiału zeolitowego na skalę półtechniczną). Polityka Energetyczna – Energy Policy Journal 14(2), pp. 79–91 (in Polish).
 
30.
He et al. 2020 – He, X., Yao, B., Xia, Y., Huang, H., Gan, Y. and Zhang, W. 2020. Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water. Powder Technology 367, pp. 40–46.
 
31.
Hui et al. 2014 – Hui, H., Gao, J., Wang, G., Liua P. and Zhang, K. 2014. Effects of Na and K ions on the Crystallization of Low-silica X Zeolite and its Catalytic Performance for Alkylation of Toluene with Methanol. Journal of the Brazilian Chemical Society 25(1), pp. 65–74.
 
32.
Khemthong et al. 2007 – Khemthong, P. Prayoonpokarach, S. and Wittayakun, J. 2007. Synthesis and characterization of zeolite LSX from rice husk silica. Suranaree Journal of Science and Technology 14(4), pp. 367–379.
 
33.
Klupa et.al 2017a – Klupa, A., Adamczyk, Z. and Harat, A. 2017a. Spinels in the fly ash of Power Plant Rybnik (Poland). [In:] Science and Technologies in Geology, Exploration and Mining 17(11). Albena, 27.06–06.07, 2017. Bulgaria: 17th International Multidisciplinary Scientific Geoconference SGEM, pp. 1051–1058.
 
34.
Klupa et.al 2017b – Klupa, A., Adamczyk, Z. and Harat, A. 2017b. Lanthanides in mineral elements found in fly ashes from the Rybnik Power Plant. [In:] Science and Technologies in Geology, Exploration and Mining 17(11). Albena, 27.06–06.07, 2017. Bulgaria: 17th International Multidisciplinary Scientific Geoconference SGEM, pp. 883–888.
 
35.
Kordylewski, W. 2005. Burning and fuel (Spalanie i paliwa). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 457 pp. (in Polish).
 
36.
Kotova et al. 2016 – Kotova, O.B., Shabalin, I.N., Shushkov, D.A. and Kocheva, L.S. 2016. Hydrothermal synthesis of zeolites from coal fly ash. Advances in Applied Ceramics 115(3), pp. 152–157.
 
37.
Kunecki et al. 2020 – Kunecki, P., Czarna-Juszkiewicz, D. and Wdowin, M. 2020. Analysis of solid sorbents for control and removal processes for elemental mercury from gas streams: a review. International Journal of Coal Science & Technology 922.
 
38.
Kwakye-Awuah et al. 2014 – Kwakye-Awuah, B., Labik, L., Nkrumah, I. and Williams, C. 2014. Removal of Arsenic in river water samples obtained from a mining community in Ghana 188 using laboratory synthesized zeolites. International Journal of Advanced Scientific and Technical Research 4(4), pp. 304–315.
 
39.
Lankapati et al. 2020 – Lankapati, H.M., Lathiya, D.R., Choudhary, L., Dalai, A.K. and Maheria, K.C. 2020. Mordenite-Type Zeolite from Waste Coal Fly Ash: Synthesis, Characterization and Its Application as a Sorbent in Metal Ions Removal. Chemistry Select 5(3), pp. 1193–1198.
 
40.
Lee et al. 2017 – Lee, Y.-R., Soe, J.T., Zhang, S., Ahn, J.-W., Park, M.B. and Ahn, W.-S. 2017. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal 317, pp. 821–843.
 
41.
Lee et al. 2005 – Lee, K.T., Rahman, A., Bhatia, M.S. and Chu, K.H. 2005. Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chemical Engineering Journal 114(1), pp. 171–177.
 
42.
Łączny et al. 2015 – Łączny, J.M., Iwaszenko, S., Gogola, K., Bajerski, A., Janoszek, T., Klupa, A. and Cempa-Balewicz, M. 2015. Study on the possibilities of treatment of combustion by-products from fluidized bed boilers into a product devoid of free calcium oxide. Journal of Sustainable Mining 14(4), pp. 164–172.
 
43.
Łączny, M.J. 2002. Unconventional methods of using fly ash (Niekonwencjonalne metody wykorzystywania popiołów lotnych). Katowice: GIG (in Polish).
 
44.
Majchrzak-Kucęba, I. and Nowak, W. 2004. Application of model-free kinetics to the study of dehydration of fly ash-based zeolite. Thermochimica Acta 413(1–2), pp. 23–29.
 
45.
Miricioiu, M.G. and Niculescu, V.C. 2020. Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis. Nanomaterials 10(3), 474.
 
46.
Mishra et al. 2019 – Mishra, V.K., Jha, S.K., Damodaran, T., Singh, Y.P, Srivastava, S., Sharma, D.K. and Prasad, J. 2019. Feasibility of coal combustion fly ash alone and in combination with gypsum and green manure for reclamation of degraded sodic soils of the Indo‐Gangetic Plains: A mechanism evaluation. Land Degradation & Development 30(11), pp. 1300–1312.
 
47.
Musyoka el al. 2011 – Musyoka, N.M., Petrik, L.F., Balfour, G., Gitari, W.M. and Hums, E. 2011. Synthesis of hydroxy sodalite from coal fly ash using waste industrial brine solution. Journal of Environmental Science and Health, Part A 46(14), pp. 1699–1707.
 
48.
Pambudi et al. 2020 – Pambudi, T., Wahyuni, E.T. and Mudasir, M. 2020. Recoverable Adsorbent of Natural Zeolite/Fe3O4 for Removal of Pb(II) in Water. Journal of Materials and Environmental Sciences 11(1), pp. 69–78.
 
49.
Pekov et al. 2012 – Pekov, I.V., Chukanov, N.V., Britvin, S.N., Kabalov, Y., Göttlicher, J., Yapaskurt, V., Zadov, A.E., Krivovichev, S., Schüller, W. and Ternes, B. 2012. The sulfite anion in ettringite-group minerals: a new mineral species hielscherite Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite-hielscherite solid-solution series. Mineralogical Magazine 76, pp. 1133–1152.
 
50.
Prasad et al. 2012 – Prasad, B., Sangeeta, K. and Tewary, B.K. 2012. Fly Ash Zeolite as Permeable Reactive Barrier for Prevention of Groundwater Contamination Due to Coal Ash Disposal. Asian Journal of Chemistry 24(3), pp. 1045–1050.
 
51.
Prats et al. 2017 – Prats, H., Bahamon, D., Alonso, G., Giménez, X., Gamallo, P. and Sayós, R. 2017. Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes. Journal of CO2 Utilization 19, pp. 100–111.
 
52.
Querol et al. 2001 – Querol, X., Umana, J.C., Plana, F., Alastuey, A., Lopez-Soler, A., Medinaceli, A., Valero, A., Domingo, M.J. and Garcia-Rojo, E. 2001. Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel 80(6), pp. 857–865.
 
53.
Querol et al. 2002 – Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Lopez-Soler, A. and Plana, F. 2020. Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology 50, pp. 413–423.
 
54.
Ratajczak et al. 1999 – Ratajczak, T., Gaweł, A., Górniak, K., Muszyński, M., Szydłak, T. and Wyszomirski, P. 1999. Fly ashes and beidellite clays from Bełchatów as components of self-solidification mixtures (Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych). Polskie Towarzystwo Mineralogiczne – Prace Specjalne 13, pp. 9–34 (in Polish).
 
55.
Ren et al. 2020 – Ren, X., Qu, R., Liu, S., Zhao, H., Wu, W., Song, H., Zheng, C., Wu, X. and Gao, X. 2020. Synthesis of Zeolites from Coal Fly Ash for the Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research 20, pp. 1127–1144.
 
56.
Rui et al. 2016 – Rui, M., Zhu, J., Wu, B. and Li, X. 2016. Adsorptive Removal of Organic Chloride from Model Jet Fuel by Na-LSX Zeolite: Kinetic, Equilibrium and Thermodynamic Studies. Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers Part A 114, pp. 321–330.
 
57.
Salih et al. 2019 – Salih, A.O., Williams, C.D. and Khanaqa, P.A. 2019. Synthesis of Zeolite Na-LSX from Iraqi Natural Kaolin using Alkaline Fusion Prior to Hydrothermal Synthesis Technique. UKH Journal of Science and Engineering 3(1), pp. 10–17.
 
58.
Sadeghi et al. 2016 – Sadeghi, M., Yekta, S., Ghaedi, H. and Babanezhad, E. 2016. Effective removal of radioactive 90Sr by CuO NPs/Ag-clinoptilolite zeolite composite adsorbent from water sample: isotherm, kinetic and thermodynamic reactions study. International Journal of Industrial Chemistry 7, pp. 315–331.
 
59.
Ściążko, M. 2009. Technological and economic barriers capture in energy systems (Technologiczne i ekonomiczne bariery usuwania ditlenku węgla w układach energetycznych). Polityka Energetyczna – Energy Policy Journal 12(2/1), pp. 73–89 (in Polish).
 
60.
Todorova et al. 2020 – Todorova, S., Barbov, B., Todorova, T., Kolev, H., Ivanova, I., Shopska, M. and Kalvachev, Y. 2020. CO oxidation over Pt-modified fly ash zeolite X. Reaction Kinetics, Mechanisms and Catalysis 129(1), pp. 773–786.
 
61.
Wala, D. and Rosiek, G. 2008. Adhesion of the geopolymer composites to concrete, steel and ceramics (Adhezja kompozytów geopolimerowych do betonu, stali i ceramiki). Kompozyty 8(1), pp. 36–40 (in Polish).
 
62.
Wdowin et al. 2014 – Wdowin, M., Wiatros-Motyka, M.M., Panek, R. Tevens, L., Franus, W. and Snape, C.E. 2014. Experimental study of mercury removal from exhaust gases. Fuel 128, pp.451–457.
 
63.
Wiśniewska et al. 2020 – Wiśniewska, M., Urban, T., Chibowski, S., Fijalkowska, G., Medykowska, M., Nosal-Wiercinska, A., Franus, W., Panek, R. and Szewczuk-Karpisz, K. 2020. Investigation of adsorption mechanism of phosphate(V) ions on the nanostructured Na-A zeolite surface modified with ionic polyacrylamide with regard to their removal from aqueous solution. Applied Nanoscience DOI: 10.1007/s13204-020-01397-9.
 
64.
Vaezihir et al. 2020 – Vaezihir, A., Bayanlou, M.B., Ahmadnezhad, Z. and Barzegari, G. 2020. Remediation of BTEX plume in a continuous flow model using zeolite-PRB. Journal of contaminant hydrology 230, DOI: 10.1016/j.jconhyd.2020.103604.
 
65.
Vaičiukynienė et al. 2012 – Vaičiukynienė, D., Skipkiūnas, G., Sasnauskas, V. and Daukšys, M. 2012. Cement compositions with modified hydrosodalite. Chemija 23(3), pp. 147–154.
 
66.
Vaičiukynienė et al. 2016 – Vaičiukynienė, G., Vaitkevičius, V., Rudžionis, Ž., Vaičiukynas, V., Navickas, A. and Nizevičienė, D. 2016. Blended Cement Systems with Zeolitized Silica Fume. Materials Science (Medžiagotyra) 22(2), pp. 299–304.
 
67.
Verrecchia et al. 2020 – Verrecchia, G., Cafiero, L., Caprariis, B., Dell’Era, A., Pettiti, I., Tuffi, R. and Scarsella, M. 2020. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption. Fuel 276, DOI: 10.1016/j.fuel.2020.118041.
 
68.
Yao et al. 2018 – Yao, G., Lei, J., Zhang, X., Sun, Z. and Zheng, S. 2018. One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 11, pp. 906.
 
69.
Yang et al. 2010 – Yang, S., Vaisman, I., Blaisten-Barojas, E., Li, X. and Karen, V.L. 2010. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database. Journal of Physical and Chemical Reference Data 39(3), pp. 1–45.
 
70.
Zgureva, D. and Boycheva, S. 2015. Synthetic zeolitic ion-exchangers from coal ash for decontamination of nuclear wastewaters. BgNS Transactions 20(2), pp. 132–136.
 
eISSN:2299-2324
ISSN:0860-0953