ORIGINAL PAPER
Trace elements in solid residues from the thermal treatment of municipal solid waste, sewage sludge and hazardous waste
 
 
More details
Hide details
1
AGH University of Krakow Faculty of Civil Engineering and Resource Management Department of Environmental Engineering Al. A. Mickiewicza 30, 30-059 Krakow, Poland
 
 
Submission date: 2023-11-20
 
 
Final revision date: 2024-02-07
 
 
Acceptance date: 2024-02-08
 
 
Publication date: 2024-06-24
 
 
Corresponding author
Waldemar Kępys   

AGH University of Krakow Faculty of Civil Engineering and Resource Management Department of Environmental Engineering Al. A. Mickiewicza 30, 30-059 Krakow, Poland
 
 
Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2024;40(2):29-46
 
KEYWORDS
TOPICS
ABSTRACT
In many countries around the world, the thermal treatment of waste plays an important role in the waste-management system. As a result, electricity and heat are produced. However, solid residues are produced in the form of bottom ash, fly ash (FA) and air pollution control (APC) residues. Alternative raw material resources are currently being sought, one of which may be anthropogenic materials from waste thermal treatment processes. This paper presents the results of a study on the trace element content of FA and APC residues from three different installations: municipal solid waste incineration (grate boiler), sewage sludge (fluidized bed boiler) and hazardous waste (rotary kiln). Research methods such as ICP-MS (inductively coupled plasma mass spectrometry), ICP-AES (inductively coupled plasma/atomic emission spectroscopy) and XRD (X-ray diffraction) were used. The results obtained indicate that the chemical composition of FA and APC residues depends mainly on the type of waste being converted, the thermal process and the flue gas treatment method. Ash from sewage sludge incineration in particular contains significant amounts of P and Sb – elements classified as critical raw materials (CRM). In addition, they also contain other valuable metals such as Ag and Zn, in amounts far exceeding the average crustal abundance. In addition, residues from the incineration of hazardous waste may pose a potential risk to the environment due to the presence of significant amounts of heavy metals such as Pb, Cd and Hg.
ACKNOWLEDGEMENTS
This study was conducted under scientific subsidy of Ministry of Education and Science (AGH No 16.16.100.215).
METADATA IN OTHER LANGUAGES:
Polish
Pierwiastki śladowe w pozostałościach z termicznego przekształcania odpadów komunalnych, osadów ściekowych i odpadów niebezpiecznych
termiczne przekształcanie odpadów, popiół lotny, stałe pozostałości z oczyszczania spalin, pierwiastki śladowe, surowce wtórne
W wielu krajach na świecie termiczne przekształcanie odpadów odgrywa istotną rolę w systemie gospodarki odpadami. W efekcie produkowana jest energia elektryczna oraz cieplna. Z drugiej strony powstają także stałe pozostałości w postaci popiołów dennych, popiołów lotnych oraz produktów oczyszczania spalin z gazowych zanieczyszczeń. Obecnie poszukiwane są alternatywne źródła surowców, jednym z nich mogą być pozostałości z procesów termicznego przekształcania odpadów. W artykule przedstawiono wyniki badań zawartości pierwiastków śladowych w popiołach lotnych (FA) i produktach oczyszczania spalin z gazowych zanieczyszczeń (APC), pochodzących z trzech różnych instalacji: spalających odpady komunalne (kocioł rusztowy), osady ściekowe (kocioł fluidalny) i odpady niebezpieczne (piec obrotowy). Zastosowano metody badawcze takie jak ICP-MS (spektrometria mas ze wzbudzeniem w plazmie indukcyjnie sprzężonej), ICP-AES (spektrometria plazmy sprzężonej indukcyjnie, atomowa spektroskopia emisyjna) i XRD (dyfrakcja rentgenowska). Uzyskane wyniki wskazują, że skład chemiczny FA i APC jest zależy przede wszystkim od rodzaju przekształcanych odpadów, procesu termicznego oraz sposobu oczyszczania spalin. Popioły, w szczególności ze spalania osadów ściekowych, zawierają znaczne ilości P oraz Sb – pierwiastków zaliczanych do surowców krytycznych (CRM). Ponadto zawierają także inne cenne metale jak Ag czy Zn, w ilości znacznie przewyższającej średnią zasobność skorupy ziemskiej. Z drugiej strony pozostałości ze spalania odpadów niebezpiecznych mogą stanowić potencjalne zagrożenie dla środowiska z powodu obecności w nich znacznych ilości metali ciężkich jak Pb, Cd i Hg.
REFERENCES (48)
1.
Adamczyk et al. 2023 – Adamczyk, J., Smołka-Danielowska, D., Krzątała, A. and Krzykawski, T. 2023. Rare earth elements, uranium, and thorium in ashes from biomass and hard coal combustion/co-combustion. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(2), pp. 87–108, DOI: 10.24425/gsm.2023.145882.
 
2.
Allegrini et al. 2014 – Allegrini, E., Maresca, A., Olsson, M.E., Sommer Holtze, M., Boldrin, A. and Astrup, T.F. 2014. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management 34(9), pp. 1627–1636, DOI: 10.1016/j.wasman.2014.05.003.
 
3.
Anastasiadou et al. 2012 – Anastasiadou, K., Christopoulos, K. and Mousios, E. 2012. Solidification/stabilization of fly and bottom ash from medical waste incineration facility. Journal of Hazardous Materials 207–208, pp. 165–170, DOI: 10.1016/j.jhazmat.2011.05.027.
 
4.
Arduin et al. 2020 – Arduin, R.H., Mathieux, F., Huisman, J., Blengini, G.A., Charbuillet, C., Wagner, M., Baldé, C.P. and Perry, N. 2020. Novel indicators to better monitor the collection and recovery of (critical) raw materials in WEEE: Focus on screens. Resources, Conservation and Recycling 157, DOI: 10.1016/j.resconrec.2020.104772.
 
5.
Bakoglu et al. 2003 – Bakoglu, M., Karademir, A. and Ayberk, S. 2003. Partitioning characteristics of targeted heavy metals in IZAYDAS hazardous waste incinerator. Journal of Hazardous Materials B99, pp. 89–105, DOI: 10.1016/s0304-3894(03)00009-8.
 
6.
Binnemans et al. 2015 – Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T. and Pontikes, Y. 2015. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production 99, pp. 17–38, DOI: 10.1016/j.jclepro.2015.02.089.
 
7.
Viegas ed. 2019. Recovery of critical and other raw materials from mining waste and landfills: State of play on existing practices, EUR 29744 EN. Publications Office of the European Union, Luxembourg, DOI: 10.2760/494020, JRC116131.
 
8.
Bodenan, F. and Deniard, Ph. 2003. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes. Chemosphere 51, pp. 335–347, DOI: 10.1016/S0045-6535(02)00838-X.
 
9.
Bogush et al. 2015 – Bogush, A., Stegemann, J.A., Wood, I. and Roy, A. 2015. Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities. Waste Management 36, pp. 119–129, DOI: 10.1016/j.wasman.2014.11.017.
 
10.
Całus-Moszko, J. and Białecka, B. 2013. Analysis of the possibilities of rare earth elements obtaining from coal and fly ash. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(1), pp. 67–80, DOI: 10.2478/gospo-2013-0007.
 
11.
Charles et al. 2020 – Charles, R.G., Douglas, P., Dowling, M., Liversage, G. and Davies, M.L. 2020. Towards increased recovery of critical raw materials from WEEE-evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling 161, pp. 1–21, DOI: 10.1016/j.resconrec.2020.104923.
 
12.
Chiang et al. 2009 – Chiang, K.Y., Tsai, Ch.Ch. and Wang, K.S. 2009. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Management 29(1), pp. 277–284, DOI: 10.1016/j.wasman.2008.04.006.
 
13.
Cho et al. 2020 – Cho, B.H., Nam, B.H., An, J. and Youn, H. 2020. Municipal solid waste incineration (MSWI) ashes as construction materials – a review. Materials 13, DOI: 10.3390/ma13143143.
 
14.
Cyr et al. 2007 – Cyr, M., Coutand, M. and Clastres, P. 2007. Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cement and Concrete Research 37, pp. 1278–1289, DOI: 10.1016/j.cemconres.2007.04.003.
 
15.
Decision 2000 – European Commission Decision 2000/532/EC of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste.
 
16.
Dominguez-Benetton et al. 2018 – Dominguez-Benetton, X., Varia, J.Ch., Pozo, G., Modin, O., Ter Heijne, A., Fransaer, J. and Rabaey, K. 2018. Metal recovery by microbial electro-metallurgy. Progress in Materials Science 94, pp. 435–461, DOI: 10.1016/j.pmatsci.2018.01.007.
 
17.
Donatello, S. and Cheeseman, Ch. R. 2013. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management 33, pp. 2328–2340, DOI: 10.1016/j.wasman.2013.05.024.
 
18.
European Commission 2020 – European Commission. 2020. Critical raw materials resilience: charting a path towards greater security and sustainability. Brussels.
 
19.
European Commission 2023 – European Commission. 2023. Proposal for a regulation of the European Parliament and of the Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending. Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. Brussels.
 
20.
Fang et al. 2018 – Fang, L., Li, J.S., Guo, M.Z., Cheeseman, C.R., Tsang, D.C.W., Donatello, S. and Poon, C.S. 2018. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere 193, pp. 278–287, DOI: 10.1016/j.chemosphere.2017.11.023.
 
21.
Fernandez et al. 1992 – Fernandez, M.A., Marfiner, L., Segarra, M., Garcia, J.C. and Espieil, F. 1992. Behavior of heavy metals in the combustion gases of urban waste incinerators. Environmental Science and Technology 26, pp. 1040–1047, DOI: 10.1021/es00029a026.
 
22.
Funari et al. 2015 – Funari, V., Braga, R., Bokhari, S.N.H., Dinelli, E. and Meisel, T. 2015. Solid residues from Italian municipal solid waste incinerators: A source for “critical” raw materials. Waste Management 45, pp. 206–216, DOI: 10.1016/j.wasman.2014.11.005.
 
23.
Glöser et al. 2015 – Glöser, S., Espinoza, L.T., Gandenberger, C. and Faulstich, M. 2015. Raw material criticality in the context of classical risk assessment. Resources Policy 44, pp. 35–46, DOI: 10.1016/j.resourpol.2014.12.003.
 
24.
Helmenstine, T. Abundance of Elements in Earth’s Crust – Periodic Table. [Online] https://sciencenotes.org [Accessed: 2023-01-10].
 
25.
Işıldar et al. 2019 – Işıldar, A., van Hullebusch, E.D., Lenz, M., Laing, G.D., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M.A. and Kuchta, K. 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials 362, pp. 467–481, DOI: 10.1016/j.jhazmat.2018.08.050.
 
26.
Jha et al. 2016 – Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K. and Lee, J.Y. 2016. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, pp. 2–26, DOI: 10.1016/j.hydromet.2016.01.035.
 
27.
Jung et al. 2004 – Jung, C.H., Matsuto, T., Tanaka, N. and Okada, T. 2004. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management 24, pp. 381–391, DOI: 10.1016/S0956-053X(03)00137-5.
 
28.
Kępys et al. 2014 – Kępys, W., Pomykała, R. and Pietrzyk, J. 2014. Study of The Properties of the Ash-Water Suspension of the Incinerated Sewage Sludge Ash (ISSA). Journal of the Polish Mineral Engineering Society 15(1), pp. 205–212.
 
29.
Klein et al. 1975 – Klein, D.H., Andren, A.W., Carter, J.A., Emery, J.F., Feldman, C., Fulkerson, W., Lyon, W.S., Ogle, J.C., Talmi, Y., Van hook, R.I., and Bolton, N. 1975. Pathways of thirty-seven trace elements through coal-fired power plant. Environmental Science and Technology 9, pp. 973–979, DOI: 10.1021/es60108a007.
 
30.
Li et al. 2004 – Li, M., Xiang, J., Hu, S., Sun, L.-S., Su, S., Li, P.-S. and Sun, X.-X. 2004. Characterization of solid residues from municipal solid waste incinerator. Fuel 83, pp. 1397–1405, DOI: 10.1016/j.fuel.2004.01.005.
 
31.
Meshram et al. 2019 – Meshram, P., Pandey, B.D., Abhilash. 2019. Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries – A resource overview. Resources Policy 60, pp. 9–22, DOI: 10.1016/j.resourpol.2018.11.015.
 
32.
Mohamed Abuel Kasem Mohamed et al. 2018 – Mohamed Abuel Kasem Mohamed, Galal Abd El Azim Ibrahim, Ahmed Mohamed Ebrahim Rizk, Mahmoud Mohamed Ahmed, Ahmed Mohamed El Nozahi, Nagui Aly Abdel-Khalek and Hasan Bakheat. 2018. Economics of exploitation phosphate ore wastes. International Journal of Mining Engineering and Mineral Processing 7(1), pp. 14–20, DOI: 10.5923/j.mining.20180701.02.
 
33.
Nowak et al. 2013 – Nowak, B., Aschenbrenner, P. and Winter, F. 2013. Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – A comparison. Fuel Processing Technology 105, pp. 195–201, DOI: 10.1016/j.fuproc.2011.06.027.
 
34.
Quina et al. 2008 – Quina, M.J., Bordado, J.C. and Quinta-Ferreira, R.M. 2008. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management 28, pp. 2097–2121, DOI: 10.1016/j.wasman.2007.08.030.
 
35.
Quina et al. 2018 – Quina, M.J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R., Funari, V., Hyks, J., Rasmussen, E. and Lederer, J. 2018. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Science of the Total Environment 635, pp. 526–542, DOI: 10.1016/j.scitotenv.2018.04.150.
 
36.
Sabbas et al. 2003 – Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., Cappai, G., Magel, G., Salhofer, S., Speiser, C., Heuss-Assbichler, S., Klein, R. and Lechner, P. 2003. Management of municipal solid waste incineration residues. Waste Management 23(1), pp. 61–88, DOI: 10.1016/S0956-053X(02)00161-7.
 
37.
Sabiha-Javied et al. 2008 – Sabiha-Javied, Tufail, M. and Khalid, S. 2008. Heavy metal pollution from medical waste incineration at Islamabad and Rawalpindi, Pakistan. Microchemical Journal 90, pp. 77–81, DOI: 10.1016/j.microc.2008.03.010.
 
38.
Santos et al. 2022 – Santos, A.C., Guedes, A., French, D., Futuro, A. and Valentim, B. 2022. Integrative study assessing space and time variations with emphasis on Rare Earth Element (REE) distribution and their potential on ashes from commercial (Colombian) coal. Minerals 12, pp. 1–32, DOI: 10.3390/min12020194.
 
39.
Smol et al. 2015 – Smol, M., Kulczycka, J., Henclik, A., Gorazda, K. and Wzorek, Z. 2015. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production 95, pp. 45–54, DOI: 10.1016/j.jclepro.2015.02.051.
 
40.
Turner, A. and Filella, M. 2021. Hazardous metal additives in plastics and their environmental impacts. Environment International 156, DOI: 10.1016/j.envint.2021.106622.
 
41.
Thipse, S.S. and Dreizin, E.L. 2002. Metal partitioning in products of incineration of municipal solid waste. Chemosphere 46, pp. 837–849, DOI: 10.1016/S0045-6535(01)00158-8.
 
42.
Watling, H.R. 2015. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5, pp. 1–60, DOI: 10.3390/min5010001.
 
43.
Vassilev et al. 2005 – Vassilev, S.V., Vassileva, Ch.G., Karayigit, A.I., Bulut, Y., Alastuey, A. and Querol, X. 2005. Phase – mineral and chemical composition of composite samplesfrom feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. International Journal of Coal Geology 61, pp. 35–63, DOI: 10.1016/j.coal.2004.06.004.
 
44.
Verhulst et al. 1996 – Verhulst, D., Buekens, A., Spencer, P.J. and Eriksson, G. 1996. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces. Environmental Science and Technology 30(1), pp. 50–56, DOI: 10.1021/es940780+.
 
45.
Yen et al. 2020 – Yen, C.P., Zhou, S.Y. and Shen, Y.H. 2020. The recovery of Ca and Zn from the municipal solid waste incinerator fly ash. Sustainability 12, DOI: 10.3390/su12219086.
 
46.
Zhang et al. 2012 – Zhang, Y., Li, Q., Jia, J. and Meng, A. 2012. Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration. Waste Management 32, pp. 2278–2286, DOI: 10.1016/j.wasman.2012.07.007.
 
47.
Zhao et al. 2008 – Zhao, L., Zhang, F.S. and Zhang, J. 2008. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. Journal of Hazardous Materials 158, pp. 465–470, DOI: 10.1016/j.jhazmat.2008.01.091.
 
48.
Zhou et al. 2017 – Zhou, B., Li, Z. and Chen, C. 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7, DOI: 10.3390/min7110203.
 
eISSN:2299-2324
ISSN:0860-0953
Journals System - logo
Scroll to top